

over Knowledge Graphs

Mikhail Galkin PhD, Research Scientist TU Dresden & Fraunhofer IAIS

Dresden

Ømichael_galkin

Outline

- Introduction: Knowledge Graphs
- Large KGs:
 - Template-based
 - Pipeline-based
- Smaller KGs: Neural Reasoning
 - Neural and Multi-Hop QA
 - Query Embedding

Dresden

IAIS

About

SPEAKER

Industrial Speech Assistance Platform

- → ConvAl
- → Question Answering
- → Knowledge Graphs
- → Speech
- → Privacy
- → Customizable & Domain-specific

On the definition of a Knowledge Graph

Given entities E, relations R, KG is a directed multi-relational graph G that comprises triples (s, p, o) $\mathcal{G} \subseteq \mathcal{E} imes \mathcal{R} imes \mathcal{E} \ (s, p, o) \in \mathcal{G}$

"Abstract schema and instances"

- * describes entities and relations
- * defines a schema
- * interrelating arbitrary entities
- * various topical domains

"Every RDF / LPG / RDF* graph is a knowledge graph"

Graph-structured world model

World models?

Entities and relations define our **domain of discourse**

How to encode it?

On representation of Knowledge Graphs

s,p,o p(s,o) (s,p,o)

On representation of Knowledge Graphs

Symbolic: Triples

RDJ	
RDJ	
Sherlock_	Holmes
Sherlock	Holmes

dbp:residesSFdbp:bornNYdbp:studioWBdbp:starringRDJ

Avengers Avengers Iron_Man Iron_Man

dbp:studio
dbp:starring
dbp:studio
dbp:starring

Marvel . RDJ . Marvel . RDJ .

Symbolic: Description Logics

Based on logical formalisms, e.g., Description Logics (DL), RDFS, OWL

KG Embeddings: PyKEEN 1.0

PyKEEN

build passing License MIT DOI 10.5281/zenodo.3982977 Optuna integrated

https://github.com/pykeen/pykeen

📈 Benchmarked!

→ PyTorch 😍

7 losses

6 metrics

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

6 optimizers

5 regularizers

2 training loops

2 negative samplers

Tracking in MLFlow, WANDB

 \rightarrow 13 datasets + your own graphs

 \rightarrow 23 KG embedding models and counting

Ali et al. Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. arxiv:2006.13365

Building KGs

Graph Databases

RDF

LPG (Labeled Property Graph)

- Query language: SPARQL
- Predicate attributes only from RDFS/OWL
- Semantic schema
- Logical reasoning

- Query languages: Cypher, Gremlin, GraphQL
- Key-value predicate attributes
- Non-semantic schema
- No reasoning

Graph Databases - Queries

SPARQL	Cypher
<pre>SELECT ?s ?friend WHERE { ?s a :Person; :name "John"; :knows ?friend .}</pre>	<pre>MATCH (s:Person)-[:knows]-(friend) WHERE s.name = "John" RETURN s, friend ;</pre>

Graph Databases - Queries

SPARQL* (Reification)	Cypher
<pre>SELECT ?s WHERE { <<?s :knows :js>> :since 2001 }</pre>	MATCH (s:Person)-[:knows {since:2001}] -> (js) RETURN s;

Knowledge Graphs in the Wild

Knowledge Graphs in the Wild

www.wikidata.org

open

free

Welcome to Wikidata

the free knowledge base with 90,761,294 data items that anyone can edit.

collaborative

Introduction • Project Chat • Community Portal • Help

Want to help translate? Translate the missing messages.

90M+entities(nodes)1150M+statements(edges)6K+properties(edge types)

linked

structured

Wikidata Data Model

Question Answering

Comprehension

Question Answering

✓ Simple KGQA

Pretty much solved!

Lukovnikov et al. Pretrained Transformers for Simple Question Answering over Knowledge Graphs. ISWC 2019

Lukovnikov et al. Pretrained Transformers for Simple Question Answering over Knowledge Graphs. ISWC 2019

Complex KGQA

Where was the author of the theory of relativity educated?

Large KGs (Wikidata-scale)

Smaller KGs

>1M triples

Build SPARQL queries Execute against a graph database

Supervised ML methods as certain pipeline components

< 1M triples

In-memory neural reasoning Graph embeddings

End-to-end or mostly neural

Large KGs (Wikidata-scale)

Smaller KGs

Pre-defined SPARQL templates

Neural Multi-Hop Reasoning

NL -> SPARQL pipelines

Query Embedding

Large KGs (Wikidata-scale)

Smaller KGs

Pre-defined SPARQL templates

Neural Multi-Hop Reasoning

NL -> SPARQL pipelines

Query Embedding

Pre-defined SPARQL templates

Template-based QA

Unger et al. Template-based Question Answering over RDF Data. WWW 2012

Pre-defined SPARQL templates

Template-based QA

Pre-defined SPARQL templates

Template-based QA

Pros

- Independent of the KG size
- Fast & parallelizable
- Explainable query results

Cons

- Manual curation of templates
 (100+ is already hard to sustain)
- Each new question formulation will require a **new** template
- Hard-coded to the KG schema (ontology)

NL -> SPARQL pipelines

Pipelines: Semantic Parsing

NL -> SPARQL pipelines

Pipelines: QAmp

Figure 1: (a) A sample question *Q* highlighting different components of the question interpretation model: references and matched URIs with the corresponding confidence scores, along with (b) the illustration of a sample KG subgraph relevant to this question. The URIs in **bold** are the correct matches corresponding to the KG subgraph.

Vakulenko et al. Message Passing for Complex Question Answering over Knowledge Graphs. CIKM 2019

Pipelines: QAmp

- Storage & Querying & subgraph retrieval: <u>HDT</u>
- Entity Linking: ElasticSearch + FastText

Approach	Р	R	F	Runtime
WDAqua	0.22*	0.38	0.28	1.50 s/q
QAmp (our approach)	0.25	0.50	0.33	0.72 s/q

Figure 5: Processing times per question from the LC-QuAD test split (Min: 0.01s Median: 0.68s Mean: 0.72s Max: 13.97s)

Pipelines: Krantikari

Idea: (1) mine core chains (relation paths) from a KG; (2) re-rank the chains using slot attention

Name some movies starring Beirut born male actors?

(a) Question, and corresponding Query Graph

Maheshwari, Trivedi et al. Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. ISWC 2019

Pipelines: Krantikari

	LC-QuAD				QALD-7					
	CCA	MRR	Ρ	R	F1	CCA	MRR	Ρ	R	F1
BiLSTM [9]	0.61	0.70	0.63	0.75	0.68	0.28	0.41	0.20	0.36	0.26
CNN [11]	0.44	0.55	0.49	0.61	0.54	0.31	0.45	0.20	0.33	0.25
DAM [16]	0.57	0.66	0.59	0.72	0.65	0.28	0.40	0.20	0.36	0.26
HRM [24]	0.62	0.71	0.64	0.77	0.70	0.28	0.40	0.15	0.31	0.20
Slot-Matching (LSTM)	0.63	0.72	0.65	0.78	0.71	0.31	0.44	0.28	0.44	0.34

Table 1: Performance on LC-Quad and QALD-7. The reported metrics are core chain accuracy (CCA), mean reciprocal rank (MRR) of the core chain rankings, as well as precision (P), recall (R), and the F1 of the execution results of the whole system.

		QALD-7	LC-QuAD
BERT	BERT	0.23	0.67
	Slot Matching (BERT)	0.18	0.68

LSTM

Table 3: CCA for slot matching model, as proposed in Sec 4.2 initialized with the weights of BERT-Small, compared with regular transformers initialized with the same weights.

Maheshwari, Trivedi et al. Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. ISWC 2019

NL -> SPARQL pipelines

NL 2 SPARQL

Pros

- Some supervised ML can be applied
- Transfer learning works
- Component ↑ -> Performance ↑
- Explainable query results

Cons

- Fast retrieval & communication to the KG is essential
- A **Snowball effect** of components error propagation
- Brute-force heuristics, e.g., extract a
 2-hop subgraph & rank; extract all
 k-long relation paths and rank

NL -> SPARQL pipelines

Play around today with DeepPavlov!

Template-based KGQA

•••

from deeppavlov import configs, build_model

kbqa_model = build_model(configs.kbqa.kbqa_cq, download=True)
kbqa_model(['Magnus Carlsen is a part of what sport?'])
>>> ["chess"]

kbqa_model = build_model(configs.kbqa.kbqa_cq_rus, download=True)
kbqa_model(['Когда родился Пушкин?'])
>>> ["1799-05-26"]

Large KGs (Wikidata-scale)

Smaller KGs

Pre-defined SPARQL templates

NL -> SPARQL pipelines

Neural Multi-Hop Reasoning

Query Embedding

Neural Multi-Hop Reasoning & Query Embedding

Where did Canadian citizens with Turing Award graduate?

KGs are sparse and incomplete

Neural Multi-Hop Reasoning & Query Embedding

Where did Canadian citizens with Turing Award graduate?

Execution in a vector space

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 Daza et al. Message Passing Query Embedding. GRL @ ICML 2020 cs224w. snap.stanford.edu

EmbedKGQA

Neural Multi-Hop Reasoning

Idea: score a triple (entity, question, answer)

Saxena et al. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ACL 2020

Additional training task: 1-hop link prediction

Model			aQA KG	-Full	MetaQA KG-50			
		1-hop	2-hop	3-hop	1-hop	2-hop	3-hop	
471	VRN	97.5	89.9	62.5	-	-	-	
43k entities	GraftNet	97.0	94.8	77.7	64.0 (91.5)	52.6 (69.5)	59.2 (66.4)	
9 relations	PullNet	97.0	99.9	91.4	65.1 (92.4)	52.1 (90.4)	59.7 (85.2)	
135k triples	KV-Mem	96.2	82.7	48.9	63.6 (75.7)	41.8 (48.4)	37.6 (35.2)	
	EmbedKGQA (Ours)	97.5	98.8	94.8	83.9	91.8	70.3	
	Model	W	ebQSP	KG-Fu	ll WebQ	SP KG-50		
1.8M entities	KV-Mem		46	.7	32.7			
5.7M triples	GraftNet		66.4		48.2			
8 GPUs ;)	PullNet		68	.1	50.1	(51.9)		
	EmbedKGQ	A	66	.6	53.2			

Saxena et al. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ACL 2020

Query Embedding

Subset of SPARQL - EPFO queries: Conjunctive + disjunction

Query Embedding

Idea: represent entities as d-dimensional boxes!

Figure 2: The geometric intuition of the two operations and distance function in QUERY2BOX. (A) Projection generates a larger box with a translated center. (B) Intersection generates a smaller box lying inside the given set of boxes. (C) Distance $dist_{box}$ is the weighted sum of $dist_{outside}$ and $dist_{inside}$, where the latter is weighted less.

Query Embedding

Idea: represent entities as d-dimensional boxes!

Figure 2: The geometric intuition of the two operations and distance function in QUERY2BOX. (A) Projection generates a larger box with a translated center. (B) Intersection generates a smaller box lying inside the given set of boxes. (C) Distance $dist_{box}$ is the weighted sum of $dist_{outside}$ and $dist_{inside}$, where the latter is weighted less.

$$\operatorname{Cen}(\mathbf{p}_{\text{inter}}) = \sum_{i} \mathbf{a}_{i} \odot \operatorname{Cen}(\mathbf{p}_{i}), \ \mathbf{a}_{i} = \frac{\exp(\operatorname{MLP}(\mathbf{p}_{i}))}{\sum_{j} \exp(\operatorname{MLP}(\mathbf{p}_{j}))},$$
$$\operatorname{Off}(\mathbf{p}_{\text{inter}}) = \operatorname{Min}(\{\operatorname{Off}(\mathbf{p}_{1}), \dots, \operatorname{Off}(\mathbf{p}_{n})\}) \odot \sigma(\operatorname{DeepSets}(\{\mathbf{p}_{1}, \dots, \mathbf{p}_{n}\})),$$

Intersection operator

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Query Embedding

Theorem

Modeling any EPFO query needs O(|E|) params

Query Embedding

Theorem

Approach

Modeling any EPFO query needs O(|E|) params

Convert all queries to the DNF (union as the last step)

Figure 3: Illustration of converting a computation graph of an EPFO query into an equivalent computation graph of the Disjunctive Normal Form.

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Query Embedding

Table 2: H@3 results of QUERY2BOX vs. GQE on FB15k, FB15k-237 and NELL995.

Query2Box

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

49 Sberloga Seminar 2020

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

50 Sberloga Seminar 2020

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

Query Embedding

"List male instrumentalists who play string instruments"

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

54 Sberloga Seminar 2020

Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020 cs224w. snap.stanford.edu

55 Sberloga Seminar 2020

Multi-hop Reasoning & Query Embedding

Neural Reasoning

Pros

- No database & query engine needed
- No SPARQL / other queries
- We can work with incomplete KGs: infer new facts and predict links

Cons

- Hardly scalable to large graphs
- Often **not explainable** results
- Computationally **expensive**
- Problems handling **literals**

Challenges: Answer Verbalization

Kacupaj et al. VQuAnDa: Verbalization QUestion ANswering Dataset. ESWC 2020

Challenges: Hyper-Relational KGs

Where did Albert Einstein receive his degree in physics?

Multirelational GNN Encoders for KGs

$$\mathbf{h}_{v}^{(k)} = f\left(\sum_{u \in \mathcal{N}(v)} \mathbf{W}^{(k)} \mathbf{h}_{u}^{(k-1)}\right)$$

$$\mathbf{h}_{v}^{(k)} = f\left(\sum_{(u,r)\in\mathcal{N}(v)} \mathbf{W}_{r}^{(k)} \mathbf{h}_{u}^{(k-1)}\right)$$

$$oldsymbol{h}_v = f\Biggl(\sum_{(u,r)\in\mathcal{N}(v)}oldsymbol{W}_{\lambda(r)}\phi(oldsymbol{x}_u,oldsymbol{z}_r)\Biggr)$$

Vanilla GCN [1]: no relations

R-GCN [2]: a whole matrix W per relation

CompGCN [3]: a vector z_r per relation + composition of (h,r) + only 3 different W: input/output/self-loop

Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017
 Schlichtkrull et al. Modeling Relational Data with Graph Convolutional Networks. ESWC 2018
 Vashishth et al. Composition-Based Multi-Relational Graph Convolutional Networks. ICLR 2020

Embedding Hyper-Relational KGs

$$oldsymbol{h}_v = figg(\sum_{(u,r)\in\mathcal{N}(v)}oldsymbol{W}_{\lambda(r)}\phi(oldsymbol{x}_u,oldsymbol{z}_r)igg)$$

B. Hyper-relational facts

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020

• Qualifying relations and entities can be used as main terms in other facts

• Not all facts might have qualifiers

Embedding Hyper-Relational KGs

$$oldsymbol{h}_v = figg(\sum_{(u,r)\in\mathcal{N}(v)}oldsymbol{W}_{\lambda(r)}\phi(oldsymbol{x}_u,oldsymbol{z}_r)igg)$$

B. Hyper-relational facts

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020

$$\mathbf{h}_{v} = f\left(\sum_{(u,r)\in\mathcal{N}(v)} \mathbf{W}_{\lambda(r)}\phi_{r}(\mathbf{h}_{u},\gamma(\mathbf{h}_{r},\mathbf{h}_{q})_{vu})\right)$$

61 Sberloga Seminar 2020

StarE: Embedding Hyper-Relational KGs

Hyper-Relational KGs: Link Prediction

$Dataset \rightarrow$	WD50K			WD50K (33)			WD50K (66)			WD50K (100)		
Method \downarrow	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
Baseline (Transformer (T))	0.275	0.207	0.404	0.218	0.158	0.334	0.270	0.197	0.417	0.351	0.261	0.530
STARE (T) + Transformer (T)	0.308	0.228	0.465	0.246	0.173	0.388	0.297	0.212	0.470	0.380	0.276	0.584
NaLP-Fix	0.177	0.131	0.264	0.204	0.164	0.277	0.334	0.284	0.423	0.458	0.398	0.563
HINGE	0.243	0.176	0.377	0.253	0.190	0.372	0.378	0.307	0.512	0.492	0.417	0.636
Baseline (Transformer (H))	0.286	0.222	0.406	0.276	0.227	0.371	0.404	0.352	0.502	0.562	0.499	0.677
STARE (H) + Transformer(H)	0.349	0.271	0.496	0.331	0.268	0.451	0.481	0.420	0.594	0.654	0.588	0.777

- + Hyper-relational models effectively leverage qualifiers to improve predictions
- ***** The **more** hyper-relational facts the **better** are predictions
- The improvement upon triple-only models grows with the ratio of hyper-relational edges in the KG

Challenges: Dialogue & Sequential QA

	Turn	Books	Movies	Soccer	Music
	q^0	When was the first book of the book series The Dwarves published?	Who played the joker in The Dark Knight?	Which European team did Diego Costa represent in the year 2018?	Led Zeppelin had how many band members?
	a^0	2003	Heath Ledger	Atlético Madrid	4
	q^1	What is the name of the sec- ond book?	When did he die?	Did they win the Super Cup the previous year?	Which was released first: Houses of the Holy or Phys- ical Graffiti?
	a^1	The War of the Dwarves	22 January 2008	No	Houses of the Holy
	q^2	Who is the author?	Batman actor?	Which club was the win- ner?	Is the rain song and immi- grant song there?
	a^2	Markus Heitz	Christian Bale	Real Madrid C.F.	No
	q^3	In which city was he born?	Director?	Which English club did Costa play for before return- ing to Atlético Madrid?	Who wrote those songs?
	a^3	Homburg	Christopher Nolan	Chelsea F.C.	Jimmy Page
	q^4	When was he born?	Sequel name?	Which stadium is this club's home ground?	Name of his previous band?
\searrow	a^4	10 October 1971	The Dark Knight Rises	Stamford Bridge	The Yardbirds

Christmann et al. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. CIKM 2019

KG

Thanks!

@michael_galkin

@mgalkin

mikhail.galkin@iais.fraunhofer.de

