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Outline
● Introduction: Knowledge Graphs

● Large KGs: 

○ Template-based

○ Pipeline-based

● Smaller KGs: Neural Reasoning

○ Neural and Multi-Hop QA

○ Query Embedding
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About
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SPEAKER
Industrial Speech 
Assistance Platform

➔ ConvAI
➔ Question Answering
➔ Knowledge Graphs
➔ Speech
➔ Privacy
➔ Customizable & 

Domain-specific
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On the definition of a Knowledge Graph
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Given entities E, relations R, KG is a 
directed multi-relational graph G 

that comprises triples (s, p, o)

* describes entities and relations
* defines a schema
* interrelating arbitrary entities
* various topical domains

“Abstract schema and 
instances”

“Every RDF / LPG / RDF* graph is 
a knowledge graph”

Graph-structured world model
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World models?

5Source: https://lod-cloud.net/

Entities and 
relations define our 
domain of discourse

How to encode it?

https://lod-cloud.net/
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On representation of Knowledge Graphs
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VectorSymbolic

s,p,o
p(s,o)
(s,p,o)
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On representation of Knowledge Graphs
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VectorSymbolic

s,p,o
p(s,o)
(s,p,o)

Open-world 
assumption

Closed-world 
assumption

Temporal / 
evolving

Logic

DB & 
DI

CV

NLP
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dbp:studio

dbp:studio

dbp:studio

dbp:starring
dbp:born

dbp:resides

Symbolic: Triples

RDJ dbp:resides SF .
RDJ dbp:born NY .
Sherlock_Holmes dbp:studio WB .
Sherlock_Holmes dbp:starring RDJ.

Avengers dbp:studio Marvel .
Avengers dbp:starring RDJ .
Iron_Man dbp:studio Marvel .
Iron_Man dbp:starring RDJ .
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Symbolic: Description Logics

SuccessfulArtist ⊑ ≥1 actedIn.Blockbuster

SuccessfulArtist(RobertDowneyJr)

actedIn ⊑ participated
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Logically consistent collection of axioms

TBox

ABox

schema, ontology,  
theory 

instances, facts, 
assertions

RBoxrestrictions, 
constraints

Based on logical formalisms, e.g., Description Logics (DL), RDFS, OWL
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dbp:starring

dbp:born

dbp:resides

[0.7, 0.3]

[0.8, 0.25]

[0.6, 0.1]

[0.5, 0.8]

[0.2, 0.4]

[0.3, 0.9]

Vector: Embeddings
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KG Embeddings: PyKEEN 1.0
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https://github.com/pykeen/pykeen

Ali et al. Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. arxiv:2006.13365

→ PyTorch 😍
→ 13 datasets + your own graphs
→ 23 KG embedding models and counting

→ 7 losses
→ 6 optimizers
→ 6 metrics
→ 5 regularizers
→ 2 training loops
→ 2 negative samplers
→ Tracking in MLFlow, WANDB

📈 Benchmarked!

https://github.com/pykeen/pykeen
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Building KGs
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Semantic Data Integration

Structured Sources

Knowledge Graph

Information Retrieval & NLP

Unstructured Sources

Knowledge Graph

https://www.draw.io/?page-id=M6FITesjWa7pPIvpxZNn&scale=auto#G10TTO8_JOKOks-Vskqnh_T0oBChbeOHV3
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Graph Databases

13

RDF LPG (Labeled Property Graph)

Alice Bob
knows

Moscow
lives

Alice Bob
knows
since: 2010

Moscow
lives
since: 2012

age: 25 age: 25

population: 12M population: 12M

● Query language: SPARQL
● Predicate attributes only from  RDFS/OWL
● Semantic schema
● Logical reasoning

● Query languages: Cypher, Gremlin, GraphQL
● Key-value predicate attributes
● Non-semantic schema
● No reasoning
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Graph Databases - Queries
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SPARQL Cypher

SELECT ?s ?friend WHERE {
   ?s a :Person; 
      :name “John” ;
      :knows ?friend .}

MATCH (s:Person)-[:knows]-(friend)
WHERE s.name = “John”
RETURN s, friend ;

John Bob
knows
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Graph Databases - Queries
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SPARQL* (Reification) Cypher

SELECT ?s WHERE {
<<?s :knows :js>> :since 2001 }

MATCH (s:Person)-[:knows {since:2001}] -> 
(js)
RETURN s;

John Bob
knows
since:2001John Bob

knows

2001

since
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Knowledge Graphs in the Wild

16https://wikidata.metaphacts.com/

https://wikidata.metaphacts.com/
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Knowledge Graphs in the Wild

17https://wikidata.metaphacts.com/

https://wikidata.metaphacts.com/
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www.wikidata.org 

90M+ entities (nodes)
1150M+ statements (edges)
6K+ properties (edge types)

http://www.wikidata.org
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https://www.mediawiki.org/wiki/Wikibase/DataModel/Primer

Wikidata 
Data Model
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Question Answering
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MRC Question

Document(s) Answer

Machine Reading 
Comprehension
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Question Answering
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MRC

KGQA

Question

Document(s) Answer

Question
query

KG Answer

Machine Reading 
Comprehension

Knowledge Graph-based 
Question Answering
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✓ Simple KGQA
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educated at

Albert Einstein

Q937

P69 ?

Where was Albert Einstein educated?

1-hop

Factoid 
questions

Pretty much solved!

Lukovnikov et al. Pretrained Transformers for Simple Question Answering over Knowledge Graphs. ISWC 2019
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✓ Simple KGQA

23

educated at

Albert Einstein

Q937

P69 ?

Where was Albert Einstein educated?

1-hop

Factoid 
questions

Pretty much solved!

Lukovnikov et al. Pretrained Transformers for Simple Question Answering over Knowledge Graphs. ISWC 2019

University 
of Zurich 

ETH 
Zurich
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Complex KGQA
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Lukovnikov et al. Pretrained Transformers for Simple Question Answering over Knowledge Graphs. ISWC 2019

Where was the author of the theory of relativity educated?

educated at

P69 ?notable work 

P800

Theory of 
Relativity

Q43514

?

Q = y, ∃x: notableWork(x, Theory of Relativity) ⋀ 
educatedAt(x, y) 

Multi-hop

Complex

FOL / EPFO 
queries
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Complex Question Answering
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Large KGs (Wikidata-scale) Smaller KGs

>1M triples

Build SPARQL queries
Execute against a graph database

Supervised ML methods as certain 
pipeline components

< 1M triples

In-memory neural reasoning
Graph embeddings

End-to-end or mostly neural
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Complex Question Answering
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Large KGs (Wikidata-scale) Smaller KGs

Pre-defined SPARQL templates

NL -> SPARQL pipelines

Neural Multi-Hop Reasoning

Query Embedding
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Complex Question Answering
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Large KGs (Wikidata-scale) Smaller KGs

Pre-defined SPARQL templates

NL -> SPARQL pipelines

Neural Multi-Hop Reasoning

Query Embedding
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Template-based QA
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Unger et al. Template-based Question Answering over RDF Data. WWW 2012

How many {Entity} did {Entity} star in?

SELECT COUNT(?x) WHERE {
?x rdf:type ?c.
?x wdt:P161 ?y

} 

Pre-defined 
template

Natural 
language

Pre-defined SPARQL 
templates
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Template-based QA
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Unger et al. Template-based Question Answering over RDF Data. WWW 2012

How many {Entity} did {Entity} star in?

SELECT COUNT(?x) WHERE {
?x rdf:type wd:Q11424.
?x wdt:P161 wd:Q38111

} 

How many films did Leonardo DiCaprio star in?

wd:Q11424 Film

wd:Q38111 Leonardo DiCaprio

Index

Pre-defined SPARQL 
templates
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Template-based QA
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Unger et al. Template-based Question Answering over RDF Data. WWW 2012

Pros

● Independent of the KG size

● Fast & parallelizable

● Explainable query results

Cons

● Manual curation of templates

(100+ is already hard to sustain)

● Each new question formulation 

will require a new template

● Hard-coded to the KG schema 

(ontology)

Pre-defined SPARQL 
templates
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Pipelines: Semantic Parsing
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NL -> SPARQL pipelines

Question
query

KG Answer

Semantic 
Parsing

Idea: Parse questions on the fly and 
construct SPARQL queries

NER Entity 
Linking

Relation 
Extraction

Query 
Re-ranking
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Pipelines: QAmp

32
Vakulenko et al. Message Passing for Complex Question Answering over Knowledge Graphs. CIKM 2019

NL -> SPARQL pipelines
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Pipelines: QAmp
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Vakulenko et al. Message Passing for Complex Question Answering over Knowledge Graphs. CIKM 2019

NL -> SPARQL pipelines

● Storage & Querying & subgraph retrieval: HDT

● Entity Linking: ElasticSearch + FastText

https://www.rdfhdt.org/
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Pipelines: Krantikari
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Maheshwari, Trivedi et al. Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. ISWC 2019

NL -> SPARQL pipelines

Idea: (1) mine core chains (relation paths) from a KG;
         (2) re-rank the chains using slot attention
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Pipelines: Krantikari
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Maheshwari, Trivedi et al. Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. ISWC 2019

NL -> SPARQL pipelines

LSTM

BERT
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NL 2 SPARQL
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Pros

● Some supervised ML can be applied

● Transfer learning works 

● Component ↑ -> Performance ↑

● Explainable query results

Cons

● Fast retrieval & communication to the 

KG is essential

● A Snowball effect of components error 

propagation

● Brute-force heuristics, e.g., extract a 

2-hop subgraph & rank; extract all 

k-long relation paths and rank

NL -> SPARQL pipelines
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Template-based KGQA
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Play around 
today with 
DeepPavlov!

http://docs.deeppavlov.ai/en/master/features/models/kbqa.html 

NL -> SPARQL pipelines

http://docs.deeppavlov.ai/en/master/features/models/kbqa.html
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Complex Question Answering
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Large KGs (Wikidata-scale) Smaller KGs

Pre-defined SPARQL templates

NL -> SPARQL pipelines

Neural Multi-Hop Reasoning

Query Embedding
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Neural Multi-Hop Reasoning 
& Query Embedding

SELECT ?y WHERE {
?x :win :TuringAward .
?x :citizen :Canada .
?x :graduate ?y . }

Where did Canadian citizens with Turing Award graduate?

Structured Sources

query

KGs are sparse and incomplete

https://www.draw.io/?page-id=M6FITesjWa7pPIvpxZNn&scale=auto#G10TTO8_JOKOks-Vskqnh_T0oBChbeOHV3
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Neural Multi-Hop Reasoning 
& Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using 
Box Embeddings. ICLR 2020
Daza et al. Message Passing Query Embedding. GRL @ ICML 2020
cs224w. snap.stanford.edu

SELECT ?y WHERE {
?x :win :TuringAward .
?x :citizen :Canada .
?x :graduate ?y . }

Where did Canadian citizens with Turing Award graduate?

embed

Execution in a vector space
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EmbedKGQA
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Saxena et al. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ACL 2020

Idea: score a triple (entity, question, answer)

Neural Multi-Hop Reasoning

Candidates:
(1) All entities in a KG
(2) Entities in a 2-hop N
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EmbedKGQA

42
Saxena et al. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ACL 2020

Additional training task: 1-hop link prediction

Neural Multi-Hop Reasoning

43k entities
9 relations
135k triples

1.8M entities
5.7M triples
8 GPUs ;)
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Query2Box
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Query Embedding

      Subset of SPARQL - EPFO queries: Conjunctive + disjunction

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020
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Query2Box
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Query Embedding

Idea: represent entities as d-dimensional boxes! 

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020
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Query2Box
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Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Idea: represent entities as d-dimensional boxes! 

Intersection 
operator
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Query2Box
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Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Modeling any EPFO query needs O(|E|) paramsTheorem
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Query2Box
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Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Modeling any EPFO query needs O(|E|) paramsTheorem

Approach Convert all queries to the DNF (union as the last step) 
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Query2Box
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Query Embedding

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

15k entities
1345 relations
500k triples

15k entities
237 relations
300k triples

65k entities
200 relations
120k triples



Sberloga Seminar 2020
49Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

cs224w. snap.stanford.edu

Query2Box Query Embedding
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50Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

cs224w. snap.stanford.edu

Query2Box Query Embedding
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cs224w. snap.stanford.edu

Query2Box Query Embedding
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cs224w. snap.stanford.edu

Query2Box Query Embedding
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cs224w. snap.stanford.edu

Query2Box Query Embedding
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cs224w. snap.stanford.edu

Query2Box Query Embedding
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55Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

cs224w. snap.stanford.edu

Query2Box Query Embedding
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Neural Reasoning
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Pros

● No database & query engine needed

● No SPARQL / other queries

● We can work with incomplete KGs:

infer new facts and predict links

Cons

● Hardly scalable to large graphs

● Often not explainable results

● Computationally expensive

● Problems handling literals

Multi-hop Reasoning & 
Query Embedding



Sberloga Seminar 2020
57

Challenges: Answer Verbalization

Where was the author of the theory of relativity educated?

educated at

P69 ?notable work 

P800

Theory of 
Relativity

Q43514

?
University 
of Zurich 

ETH 
Zurich

Input Question

Answer

Human-friendly 
Answer

The author of the theory of relativity educated at the University of Zurich 
and ETH Zurich.

Kacupaj et al. VQuAnDa: Verbalization QUestion ANswering Dataset. ESWC 2020
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Challenges: Hyper-Relational KGs
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educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of 

Zurich 

P69P69

Q206702Q11942

Academic degree (P512): 
      Bachelor (Q787674)

Academic major (P812): 
         Mathematics (Q853077)

Academic degree (P512):
      Doctorate (Q849697)

Academic major (P812): 
      Physics (Q413)

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020

Where did Albert Einstein  receive his degree in physics?

relevant

not relevant
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Multirelational GNN Encoders for KGs
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[1] Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017
[2] Schlichtkrull et al. Modeling Relational Data with Graph Convolutional Networks. ESWC 2018
[3] Vashishth et al. Composition-Based Multi-Relational Graph Convolutional Networks. ICLR 2020

Vanilla GCN [1]: no relations

R-GCN [2]: a whole matrix W per relation

CompGCN [3]:  a vector z_r per relation +
  composition of (h,r)        +

       only 3 different W: input/output/self-loop   
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Embedding Hyper-Relational KGs
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educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of 

Zurich 

Academic degree (P512): 
      Bachelor (Q787674)

Academic major (P812): 
         Mathematics (Q853077)

Academic degree (P512):
      Doctorate (Q849697)

Academic major (P812): 
      Physics (Q413)

A. Triple-based facts

B. Hyper-relational facts

P69P69

Q206702Q11942

educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of 

Zurich 

P69P69

Q206702Q11942

?
● Qualifying relations and entities can 

be used as main terms in other facts

● Not all facts might have qualifiers

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020



Sberloga Seminar 2020

Embedding Hyper-Relational KGs
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educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of 

Zurich 

Academic degree (P512): 
      Bachelor (Q787674)

Academic major (P812): 
         Mathematics (Q853077)

Academic degree (P512):
      Doctorate (Q849697)

Academic major (P812): 
      Physics (Q413)

A. Triple-based facts

B. Hyper-relational facts

P69P69

Q206702Q11942

educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of 

Zurich 

P69P69

Q206702Q11942

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020
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StarE: Embedding Hyper-Relational KGs
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Academic degree (P512):
      Doctorate (Q849697)

Academic major (P812): 
      Physics (Q413)

educated at

Albert Einstein

Q937

University of 
Zurich 

P69

Q206702

★

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020
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Hyper-Relational KGs: Link Prediction
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★ Hyper-relational models effectively leverage qualifiers to improve predictions

★ The more hyper-relational facts - the better are predictions

★ The improvement upon triple-only models grows with the ratio of hyper-relational 
edges in the KG 

Galkin et al. Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020



Sberloga Seminar 2020

Challenges: Dialogue & Sequential QA
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KG

Christmann et al. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. CIKM 2019

https://convex.mpi-inf.mpg.de/ 

https://convex.mpi-inf.mpg.de/
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Thanks!
@migalkin
@michael_galkin
@mgalkin
mikhail.galkin@iais.fraunhofer.de
migalkin.github.io

mailto:mikhail.galkin@tu-dresden.de

