

The 2020 Conference on Empirical Methods in Natural Language Processing

Message Passing for Hyper-Relational Knowledge Graphs

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, Jens Lehmann

TU Dresden & Fraunhofer IAIS & SDA Research Dresden, Germany

Triple-based Knowledge Graphs

RDF

Triple-based Knowledge Graphs

Triple-based Knowledge Graphs

Hyper-Relational Knowledge Graphs

Statements with Qualifiers in Wikidata Entity-relation Edge Attributes Edge Instances

[Rosso et al] Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction. WWW 2020 [Hartig et al] Foundations of rdf* and sparql* (an alternative approach to statement-level metadata in RDF)

SPARQL*

Academic major Mathematics .

RDF*

Graph Representation Learning Pipeline

Multirelational GNN Encoders for KGs

$$\mathbf{h}_{v}^{(k)} = f\left(\sum_{u \in \mathcal{N}(v)} \mathbf{W}^{(k)} \mathbf{h}_{u}^{(k-1)}\right)$$

$$\mathbf{h}_{v}^{(k)} = f\left(\sum_{(u,r)\in\mathcal{N}(v)} \mathbf{W}_{r}^{(k)} \mathbf{h}_{u}^{(k-1)}\right)$$

$$oldsymbol{h}_v = f\Biggl(\sum_{(u,r)\in\mathcal{N}(v)}oldsymbol{W}_{\lambda(r)}\phi(oldsymbol{x}_u,oldsymbol{z}_r)\Biggr)$$

Vanilla GCN [1]: no relations

R-GCN [2]: a whole matrix W per relation

CompGCN [3]: a vector z_r per relation + composition of (h,r) + only 3 different W: input/output/self-loop

[1] Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017
 [2] Schlichtkrull et al. Modeling Relational Data with Graph Convolutional Networks. ESWC 2018

[3] Vashishth et al. Composition-Based Multi-Relational Graph Convolutional Networks. ICLR 2020

Embedding Hyper-Relational KGs

 $oldsymbol{h}_v = figg(\sum_{(u,r)\in\mathcal{N}(v)}oldsymbol{W}_{\lambda(r)}\phi(oldsymbol{x}_u,oldsymbol{z}_r)igg)$

B. Hyper-relational facts

- Qualifying relations and entities can be used as main terms in other facts
- Not all facts might have qualifiers

Embedding Hyper-Relational KGs

$$oldsymbol{h}_v = f \Bigg(\sum_{(u,r) \in \mathcal{N}(v)} oldsymbol{W}_{\lambda(r)} \phi(oldsymbol{x}_u,oldsymbol{z}_r) \Bigg)$$

B. Hyper-relational facts

$$\mathbf{h}_{v} = f\left(\sum_{(u,r)\in\mathcal{N}(v)} \mathbf{W}_{\lambda(r)}\phi_{r}(\mathbf{h}_{u},\gamma(\mathbf{h}_{r},\mathbf{h}_{q})_{vu})\right)$$

10 EMNLP 2020

StarE: Embedding Hyper-Relational KGs

StarE: Embedding Hyper-Relational KGs

StarE: Qualifiers Aggregation

 $\mathbf{h}_q = \mathbf{W}_q \qquad \sum \qquad \phi_q(\mathbf{h}_{qr}, \mathbf{h}_{qv})$ $(qr,qv) \in Q_{jrvu}$

is any entity-relation composition function like

- TransE
- HolE
- RotatE

etc

Combining Main Relation w/ Qualifiers

$$\mathbf{h}_q = \mathbf{W}_q \sum_{(qr,qv) \in Q_{jrvu}} \phi_q(\mathbf{h}_{qr}, \mathbf{h}_{qv})$$

$$\gamma(\mathbf{h}_r, \mathbf{h}_q) = \alpha \odot \mathbf{h}_r + (1 - \alpha) \odot \mathbf{h}_q$$

Composing a Full Message

Encoding Hyper-Relational KGs

Sparse Triple Representation

S	Q937		
0	Q206702		
r	P69		
index	k	k+1	k+2

Sparse Qualifier Representation

index	k	ĸ	
qr	P812	P512	
qv	Q413	Q849697	

 $O(|\mathcal{E}|+|\mathcal{Q}|)$ Space complexity

Graph Representation Learning Pipeline

17 EMNLP 2020

Research Questions

1. Do qualifiers improve the accuracy of subject / object prediction of a fact?

```
Q937, P69, ?
Q937, P69, ?, P512, Q849697, P812, Q413
?, P69, Q206702
?, P69, Q206702, P512, Q849697, P812, Q413
```

- 2. How many qualifiers do you need?
 - In the whole KG
 - Per fact

Decoders for Downstream Tasks

 \leftarrow A decoder for link prediction

- Datasets issue:
 No such graphs in the
 Open Graph Benchmark
 - Very few LP datasets

Datasets Issue

Dataset	Entities	Statements	w/ Quals (%)	Relations	E in quals	R in quals	Train	Valid	Test
WikiPeople	34,839	369,866	9,482 (2.6%)	375	416	35	294,439	37,715	37,712
JF17K	28,645	100,947	46,320 (45.9%)	322	3652	180	76,379	-	24,568

WikiPeople

- Most statements contain datetime literals (usually dropped in LP)
- After cleaning: only ~3% of facts have qualifiers
 - 80% of which have 1 qualifier

JF17K

- Obtained from discontinued Freebase
- Test set leakages: ~45% of test facts have the same (h, r, t) in train
- Triple-only models can exploit the leak

WD50K: a Family of Hyper-Relational Datasets

Dataset	Entities	Statements	w/ Quals (%)	Relations	E in quals	R in quals	Train	Valid	Test
WD50K	47,156	236,507	32,167 (13.6%)	532	5460	45	166,435	23,913	46,159
WD50K (33)	38,124	102,107	31,866 (31.2%)	475	6463	47	73,406	10,568	18,133
WD50K (66)	27,347	49,167	31,696 (64.5%)	494	7167	53	35,968	5,154	8,045
WD50K (100)	18,792	31,314	31,314 (100%)	279	7862	75	22,738	3,279	5,297

Hyper-Relational KGs: Link Prediction

Exp	Method		Wiki	People		JF17K				
#		MRR	H@1	H@5	H@10	MRR	H@1	H@5	H@10	
1	m-TransH	0.063	0.063	-	0.300	0.206	0.206	-	0.463	
1	RAE	0.059	0.059	-	0.306	0.215	0.215	-	0.469	
1	NaLP-Fix	0.420	0.343	-	0.556	0.245	0.185	-	0.358	
1	HINGE	0.476	0.415	-	0.585	0.449	0.361	-	0.624	
1,4	Transformer (H)	0.469	0.403	0.538	0.586	0.512	0.434	0.593	0.665	
1,4	STARE (H) + Transformer(H)	0.491	0.398	0.592	0.648	0.574	0.496	0.658	0.725	
4	Transformer (T)	0.474	0.419	0.532	0.575	0.537	0.473	0.606	0.663	
4	STARE (T) + Transformer (T)	0.493	0.400	0.592	0.648	0.562	0.493	0.637	0.702	

Hyper-Relational KGs: Link Prediction

$Dataset \rightarrow$	WD50K			WD50K (33)			WD50K (66)			WD50K (100)		
Method \downarrow	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
Baseline (Transformer (T))	0.275	0.207	0.404	0.218	0.158	0.334	0.270	0.197	0.417	0.351	0.261	0.530
STARE (T) + Transformer (T)	0.308	0.228	0.465	0.246	0.173	0.388	0.297	0.212	0.470	0.380	0.276	0.584
NaLP-Fix	0.177	0.131	0.264	0.204	0.164	0.277	0.334	0.284	0.423	0.458	0.398	0.563
HINGE	0.243	0.176	0.377	0.253	0.190	0.372	0.378	0.307	0.512	0.492	0.417	0.636
Baseline (Transformer (H))	0.286	0.222	0.406	0.276	0.227	0.371	0.404	0.352	0.502	0.562	0.499	0.677
STARE (H) + Transformer(H)	0.349	0.271	0.496	0.331	0.268	0.451	0.481	0.420	0.594	0.654	0.588	0.777

- + Hyper-relational models effectively leverage qualifiers to improve predictions
- ***** The **more** hyper-relational facts the **better** are predictions
- The improvement upon triple-only models grows with the ratio of hyper-relational edges in the KG

Hyper-Relational KGs: Link Prediction

- As few as two qualifiers per fact yield an observable improvement
- StarE + decoder ensure the performance slowly grows or remains stable while decoder-only model shows degradation in performance

TL;DR

- 1. Hyper-relational KGs are much more informative than vanilla KGs
- 2. Contribution: StarE a GNN encoder for hyper-relational KGs (RDF* and LPG)
- 3. Contribution: WD50K a new family of hyper-relational datasets for LP
- 4. Experiments: hyper-relational models **drastically** outperform triple baselines

Future work: design datasets for node and graph classification, and probe StarE

Multirelational GNN Encoders for KGs

$$\begin{aligned} \mathbf{GCN} \qquad \mathbf{h}_{v}^{(k)} &= f\left(\sum_{u\in\mathcal{N}(v)}\mathbf{W}^{(k)}\mathbf{h}_{u}^{(k-1)}\right) \\ \mathbf{R}\text{-}\mathbf{GCN} \qquad \mathbf{h}_{v}^{(k)} &= f\left(\sum_{(u,r)\in\mathcal{N}(v)}\mathbf{W}_{r}^{(k)}\mathbf{h}_{u}^{(k-1)}\right) \\ \mathbf{CompGCN} \qquad \mathbf{h}_{v} &= f\left(\sum_{(u,r)\in\mathcal{N}(v)}\mathbf{W}_{\lambda(r)}\phi(\mathbf{x}_{u},\mathbf{z}_{r})\right) \\ \mathbf{StarE} \qquad \mathbf{h}_{v} &= f\left(\sum_{(u,r)\in\mathcal{N}(v)}\mathbf{W}_{\lambda(r)}\phi_{r}(\mathbf{h}_{u},\gamma(\mathbf{h}_{r},\mathbf{h}_{q})vu)\right) \end{aligned}$$

26 EMNLP 2020