What is a Knowledge Graph?

Mikhail Galkin

Postdoc @ Mila & McGill

Outline

- On the definition & representation
- Part I: Symbolic
 - Logical Foundations
 - Databases & Querying
 - KG Construction
- Part II: Vector
 - NLP
 - KG Embeddings
 - Graph ML

On the definition of a Knowledge Graph

Given entities E, relations R, KG is a directed multi-relational graph G that comprises triples (s, p, o) $\mathcal{G} \subseteq \mathcal{E} imes \mathcal{R} imes \mathcal{E} \ (s, p, o) \in \mathcal{G}$

"Abstract schema and instances"

- * describes entities and relations
- * defines a schema
- * interrelating arbitrary entities
- * various topical domains

"Every RDF / LPG / RDF* graph is a knowledge graph"

On the definition of a Knowledge Graph

Given entities E, relations R, KG is a directed multi-relational graph G that comprises triples (s, p, o) $\mathcal{G} \subseteq \mathcal{E} imes \mathcal{R} imes \mathcal{E} \ (s, p, o) \in \mathcal{G}$

"Abstract schema and instances"

- * describes entities and relations
- * defines a schema
- * interrelating arbitrary entities
- * various topical domains

"Every RDF / LPG / RDF* graph is a knowledge graph"

Graph-structured world model

World models?

Entities and relations define our **domain of discourse**

How to encode it?

On representation of Knowledge Graphs

s,p,o p(s,o) (s,p,o)

On representation of Knowledge Graphs

Symbolic: Triples

RDJ	
RDJ	
Sherlock_	Holmes
Sherlock_	Holmes

dbp:residesSFdbp:bornNYdbp:studioWBdbp:starringRDJ

Avengers Avengers Iron_Man Iron_Man

dbp:studio
dbp:starring
dbp:studio
dbp:starring

Marvel . RDJ . Marvel . RDJ .

Part I: Symbolic

- Derived from parsing Wikipedia infoboxes
- 6B+ facts
- The first de-facto standard for creating and publishing KGs

- Wikipedia + categories from WordNet
- 120M+ facts

- NELL Never Ending Language Learner
- Automatic facts from parsing web pages
- 15B+ facts

- The source of facts for Wiki infoboxes
- Flexible schema + qualifiers
- 100M+ entities, 7B+ statements
- Big Tech contributes to Wikidata

- Google Knowledge Graph based on the acquired Freebase (2007)
- Common knowledge + user-specific info
- Everyone else started to want "my own KG" after that

- Open and Linked KGs
- Domain-specific KGs in various domains
- Personal KGs
- ... many more

Part I: Symbolic

Logical Foundations

Semantic Web Layer Cake

The Semantic Web Technology Stack (not a piece of cake...)

A stack of standards for KGs

- 1. Web Platform
- 2. Serialization
- 3. Modeling
- **Complex Logic** 4.
- 5. Querying
- Interfaces 6.

SPECIFICATIONS&SOLUTIONS

URVIRI HTTP

Resource Description Framework (RDF)

- 1. Facts as triples
- 2. All entities and relations are (ideally) URIs

http://example.com/RDJ

ex:RDJ

http://dbpedia.org/resides http://dbpedia.org/resource/SanFrancisco

dbr:resides

dbp:SanFrancisco

Semantic Web Technologies , Dr. Harald Sack, Hasso Plattner Institute, University of Potsdam

http://www.w3.org/TR/rdf-schema/#ch_classes

RDF + RDFS

ex:RDJ rdf:type ex:Person ex:NewYork rdf:type ex:City

RDF + RDFS Class Hierarchies

RDFS Vocabulary

rdfs:Class

rdf:Property rdfs:range rdfs:domain

rdfs:subClassOf rdfs:subPropertyOf

rdfs:label rdfs:comment rdfs:seeAlso rdfs:isDefinedBy

ex:RDJ ex:Actor ex:Person rdf:type rdfs:subClassOf rdfs:subClassOf ex:Mammal

ex:Actor ex:Person

dbp:resides

More Logics: OWL

Based on logical formalisms, e.g., Description Logics (DL)

More Logics: OWL

Reasoners

- Input: RDF/OWL graph
 Output: RDF/OWL graph with new facts (assertions)
 - New node attributes
 - New edges between nodes

Expl	anation for: instanceB Type C	
	instanceB predicateA instanceA	?
	instanceA Type A	?
	C EquivalentTo predicateA some A	6

- Every fact can be explained (most ML models can't do that)
- Inference time grows very fast with graph size
- **•** research: speed of ML reasoning + explainability of rule-based

Knowledge Graph

TBox (Terminology Box)

Data schema

Ontology

Онтология:

- → Formal model curated by experts
- → Often created & maintained manually

ABox (Assertion Box) Actual "content" Triples, edges between entities

→ Often created from existing sources using semantic data integration

Open World Assumption

Closed World Assumption

- Incomplete picture of the world
- Everything not explicitly stated *possibly* true
- Extendable by design

- Explicitly state everything about the world
- Everything not True == False
- Source of truth
 - Column in DB
 - Object field
 - Frame slot

Person	Age
Alice	28
Bob	N/A

Part I: Symbolic

Graph Databases & Querying

RDF Alice Bob age: 25 lives MTL population: 1.8M

Graph DBs: RDF vs LPG

LPG (Labeled Property Graph)

- Query Language: SPARQL
- RDFS/OWL properties of predicates
- Semantic scheme (w/ ontologies)
- Logical inference

- QLs Cypher, Gremlin, GraphQL
- Any properties of predicates
- Non-semantic scheme
- No logical inference

SPARQL Query Structure

:McGill :McGill :McGill :University

rdf:type
rdf:type
:locatedIn
rdfs:subClassOf

:University .
:Research_Institution .
:MTL .
:Educational Institution .
SPARQL Query Structure

Prefixes	<pre>PREFIX rdf: <http: 02="" 1999="" 22-rdf-syntax-ns#="" www.w3.org=""> .</http:></pre>
	PREFIX rats: <nttp: 01="" 2000="" rat-schema#="" www.w3.org=""> .</nttp:>
Query Type	
	SELECT <pre>?type ?city</pre>
Projected Variables	FROM <named_graph></named_graph>
Graph Source	<pre>// WHERE {</pre>
	Ptype rdfs:subClassOf Pnum
BGP	}
Modifiers	ORDER BY <> LIMIT <num> OFFSET <num></num></num>

SPARQL 1.1 - Federated Querying

}

 Federated queries - query other endpoints within a query using SERVICE

```
SELECT ?film ?label ?subject WHERE {
   SERVICE <http://data.linkedmdb.org/sparql> {
      ?movie rdf:type movie:film .
      ?movie rdfs:label ?label .
      ?movie owl:sameAs ?dbpediaLink
      FILTER (regex(str(?dbpediaLink), "dbpedia"))
   }
   SERVICE <http://dbpedia.org/sparql> {
      ?dbpediaLink dct:subject ?subject .
   }
```

Advanced SPARQL - Reasoning

- :McGill rdf:type :University .
 :McGill rdf:type :Research_Institution .
 :McGill :locatedIn :MTL .
 :University rdfs:subClassOf :Educational_Institution .
 (:McGill rdf:type :Educational_Institution .)
 - Standard SPARQL no reasoning, all triples have to be **materialized**
 - Some Graph DBMS do allow for reasoning (inferring new triples in memory)
 - RDFS (subClassOf, range, domain)
 - \circ OWL 2 RL / QL
 - SWRL
 - \circ owl:sameAs

HOW TO STORE RDF DATA?

https://commons.wikimedia.org/wiki/File:A view of the server room at The National Archives.jpg

RDF & Graph Databases

Figure 2. A classification of RDF data storage approaches

- Six separate indexes
 - (SPO, SOP, OSP, OPS, PSO, POS)
 - Stored in the leaf pages of the clustered B+ tree

- Store collation order
 - Neighboring indexes are very similar
 - Stores the change between triples

- Compression
 - Stores only the change (δ) between triples

Labeled Property Graph (LPG) Databases

properties (name/value pairs)

https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/

LPG - Cypher

- Standard for Neo4j
- Almost 1-1 mapping to SPARQL

Cypher	SPARQL
MATCH (s:Person) WHERE s.name = "John" RETURN s;	SELECT ?s WHERE { ?s a :Person; :name "John" }
<pre>MATCH (s:Person)-[:knows]-(friend) WHERE s.name = "John" RETURN s, friend ;</pre>	<pre>SELECT ?s ?friend WHERE { ?s a :Person; :name "John" ; :knows ?friend }</pre>

LPG - Cypher

- Standard for Neo4j
- Almost 1-1 mapping to SPARQL

Cypher	SPARQL* (Reification)
MATCH (s:Person)-[:knows {since:2001}] -> (js)	SELECT ?s WHERE {
RETURN s;	< s :knows :js > :since 2001 }

RDF* / SPARQL*

RDF* / SPARQL*

RDF* / SPARQL* + LPG Convergence

Part I: Symbolic

KG Construction

52 26.10.2021

KG Construction

Knowledge Graph

Semantic Data Integration

Structured Sources

KG Construction

Physical Integration (Materialization)

Data Warehouses

Virtual Integration (Federalization)

Data Lakes

Building KGs from texts

Albert Einstein was a <mark>German</mark>-born <mark>theoretical physicist</mark> who developed the <mark>theory of relativity</mark>.

Part II: Vector (some ML)

NLP

59 26.10.2021

NLP - Named Entity Recognition

Apple Inc. (Q312)

American producer of hardware, software, and services, based in Cupertino, California Apple Computer, Inc. | Apple Computer | Apple Computer Inc | Apple | Apple Incorporated | Apple Computer Incorporated |

NLP - Relation Linking

61

62 26.10.2021

NLP - Language Modeling

Robert Downey Jr. portrayed [MASK] in the Marvel movie in 2008.

Knowledge Graph

(Iron Man, cast member, Robert Downey Jr)(Iron Man, production company, Marvel)(Iron Man, released, 2008)(Robert Downey Jr, character role, Tony Stark)(Tony Stark, pseudonym, Iron Man)

Precise facts

Entities & relations

Explainability

Unstructured Sources

Large-scale text corpora (Wikipedia, OpenBooks, Reddit, CommonCrawl, etc)

Part II: Vector (some ML)

Representation Learning (KG Embeddings)

Embeddings

Tensor Factorization Goal: encode nodes so that **similarity in the embedding space (e.g., dot product)** approximates **similarity in the original network**

KGE - Graphs as Tensors

starredIn

KGE - Graphs as Tensors

starredIn

played

characterIn

KGE - Graphs as Tensors

KGE - RESCAL

Tensor Factorization

Goal - factorize a sparse 3D tensor to dense E and R

KGE - RESCAL

Tensor Factorization

Goal - factorize a sparse 3D tensor to dense E and R

KGE - TransE

Bordes et al. Translating Embeddings for Modeling Multi-relational Data. NIPS 2013 Wang et al. Knowledge Graph Embedding by Translating on Hyperplanes. AAAI 2014
KGE - TransE

Tensor Factorization

Translation

LOTS of

models

Cai et al. A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications. IEEE TKDE 2017 TABLE 9Knowledge graph embedding using margin-based ranking loss.

10-10-10-10-10-10-10-10-10-10-10-10-10-1				
GE Algorithm	Energy Function $f_r(h, t)$			
TransE [91]	$\ h+r-t\ _{l1}$			
TKRL [53]	$\ M_{rh}h+r-M_{rt}t\ $			
TransR [15]	$\ hM_r+r-tM_r\ _2^2$			
CTransR [15]	$\ hM_r + r_c - tM_r\ _2^2 + lpha \ r_c - r\ _2^2$			
TransH [14]	$\ (h-w_r^Thw_r)+d_r-(t-w_r^Ttw_r)\ _2^2$			
SePLi [39]	$rac{1}{2} \ W_i e_{ih} + b_i - e_{it} \ ^2$			
TransD [125]	$\ M_{rh}h + r - M_{rt}t\ _2^2$			
TranSparse [126]	$\ M^h_r(heta^h_r)h+r-M^t_r(heta^t_r)t\ ^2_{l_1/2}$			
m-TransH [127]	$\left\ \sum_{\rho\in\mathcal{M}(R_r)}a_r(\rho)\mathbb{P}_{n_r}(t(\rho))+b_r\right\ ^2, t\in\mathcal{N}^{\mathcal{M}(R_r)}$			
DKRL [128]	$\boxed{\ h_d + r - t_d\ + \ h_d + r - t_s\ + \ h_s + r - t_d\ }$			
ManifoldE [129]	Sphere: $\ arphi(h) + arphi(r) - arphi(t) \ ^2$			
	Hyperplane: $(\varphi(h) + \varphi(r_{head}))^T (\varphi(t) + \varphi(r_{tail}))$			
	arphi is the mapping function to Hilbert space			
TransA [130]	$\ h+r-t\ $			
puTransE [43]	$\ h+r-t\ $			
KGE-LDA [60]	$\ h+r-t\ _{l1}$			
SE [90]	$\ R_uh-R_ut\ _{l1}$			
SME [92] linear	$(W_{u1}r + W_{u2}h + b_u)^T(W_{v1}r + W_{v2}t + b_v)$			
SME [92] bilinear	$(W_{u1}r + W_{u2}h + b_u)^T(W_{v1}r + W_{v2}t + b_v)$			
SSP [59]	$-\lambda \ e - s^T e s\ _2^2 + \ e\ _2^2, S(s_h, s_t) = \frac{s_h + s_t}{\ s_h + s_t\ _2^2}$			
NTN [131]	$u_r^T \tanh(h^T W_r t + W_{rh} h + W_{rt} t + b_r)$			
HOLE [132]	$r^T(h \star t)$, where \star is circular correlation			
MTransE [133]	$\ h+r-t\ _{l1}$			

KGE - Incorporating OWL Rules

$$\begin{split} \min_{\theta} \sum_{(h,r,t)\in\mathcal{S}} & \alpha_{h,t}^r \log(1+\exp(-y_{h,t}^r\,f_{h,t}^r)) + \lambda \sum_{i=1}^l \frac{\mathcal{R}_i}{N_i} \\ \text{subject to} & \|h\| = 1 \text{ and } \|t\| = 1 \,. \end{split}$$

Translation

Tensor

Factorization

Rule	$\begin{array}{l} \text{Definition} \\ \forall \mathtt{h}, \mathtt{t}, \mathtt{s} \in \mathcal{E} : \dots \end{array}$	Formulation based on score function	Formulation based on NN	Equivalent regularization form (Denoted as \mathcal{R}_i in Equation (2))
Equivalence	$(\mathtt{h},r_1,\mathtt{t})\Leftrightarrow(\mathtt{h},r_2,\mathtt{t})$	$f_{h,t}^{r_1} = f_{h,t}^{r_2} + \xi_{h,t}$	$\Phi_{h,t}^T(oldsymbol{eta}^{r_1}-oldsymbol{eta}^{r_2})=\xi_{h,t}$	$\max(\left\ oldsymbol{eta}^{r_1}-oldsymbol{eta}^{r_2} ight\ _1-\xi_{ ext{Eq}},0)$
Symmetric	$(\mathtt{h},r,\mathtt{t}) \Leftrightarrow (\mathtt{t},r,\mathtt{h})$	$f_{h,t}^r = f_{t,h}^r + \xi_{h,t}$	$(\Phi_{h,t} - \Phi_{t,h})^T \boldsymbol{\beta}^r = \xi_{h,t}$	$\max((\Phi_{h,t}-\Phi_{t,h})^Toldsymbol{eta}^r -\xi_{ ext{Sy}},0)$
Asymmetric	$(\mathtt{h},r,\mathtt{t}) \Rightarrow \neg(\mathtt{t},r,\mathtt{h})$	$f_{h,t}^r = f_{t,h}^r + \mathcal{M}_{h,t}$	$(\Phi_{h,t} - \Phi_{t,h})^T oldsymbol{eta}^r = \mathcal{M}$	NC
Negation	$(\mathtt{h},r_1,\mathtt{t}) \Leftrightarrow \neg(\mathtt{h},r_2,\mathtt{t})$	$f_{h,t}^{r_1} = \mathcal{M} - f_{h,t}^{r_2} +$	$\Phi_{h,t}^T(oldsymbol{eta}^{r_1}\!+\!oldsymbol{eta}^{r_2})=\mathcal{M}\!+\!\xi_{h,t}$	NC
). 		Sh,t		
Implication	$(\mathtt{h},r_1,\mathtt{t}) \Rightarrow (\mathtt{h},r_2,\mathtt{t})$	$f_{h,t}^{r_1} \le f_{h,t}^{r_2}$	$\Phi_{h,t}^T(oldsymbol{eta}^{r_1}-oldsymbol{eta}^{r_2})\leq 0$	$\max(\sum_i (oldsymbol{eta}_i^{r_1} - oldsymbol{eta}_i^{r_2}) + \xi_{ ext{Im}}, 0)$
Inverse	$(\mathtt{h},r_1,\mathtt{t}) \Rightarrow (\mathtt{t},r_2,\mathtt{h})$	$f_{h,t}^{r_1} \leq f_{t,h}^{r_2}$	$\Phi_{h,t}^T oldsymbol{eta}^{r_1} - \Phi_{t,h}^T oldsymbol{eta}^{r_2} \leq 0$	$\max(\Phi_{h,t}^T oldsymbol{eta}^{r_1} - \Phi_{t,h}^T oldsymbol{eta}^{r_2} + \xi_{ ext{In}}, 0)$
Reflexivity	$(\mathtt{h},r,\mathtt{h})$	$f_{h,h}^r = \mathcal{M} - \xi_{h,h}$	$\Phi_{h,h}^T oldsymbol{eta}^r = \mathcal{M} - \xi_{h,h}$	NC
Irreflexive	$ eg(\mathtt{h},r,\mathtt{h})$	$f_{h,h}^r = \xi_{h,h}$	$\Phi_{h,h}^T \boldsymbol{eta}^r = \xi_{h,h}$	NC
Transitivity	$egin{array}{lll} ({\tt h},r,{\tt t}) \ \wedge \ ({\tt t},r,{\tt s}) & \Rightarrow \ ({\tt h},r,{\tt s}) \end{array}$	$ \begin{array}{l} \sigma(f_{h,s}^r) \geq \sigma(f_{h,t}^r) \times \\ \sigma(f_{t,s}^r) \end{array} $	$ \begin{array}{l} \sigma(\Phi_{h,t}\boldsymbol{\beta}^r)\times\sigma(\Phi_{t,s}\boldsymbol{\beta}^r)-\\ \sigma(\Phi_{h,s}^T\boldsymbol{\beta}^r) \leq 0 \end{array} $	$rac{\max(\sigma(\Phi_{h,t}oldsymbol{eta}^r)~ imes~\sigma(\Phi_{t,s}oldsymbol{eta}^r)~-}{\sigma(\Phi_{h,s}^Toldsymbol{eta}^r)+\xi_{ ext{Tr}},0)}$
Composition	$egin{aligned} (\mathtt{h},r_1,\mathtt{t})\wedge(\mathtt{t},r_2,\mathtt{s})\Rightarrow\ (\mathtt{h},r_3,\mathtt{s}) \end{aligned}$	$\sigma(f_{h,s}^{r_1}) \geq \sigma(f_{h,t}^{r_2}) \times \\ \sigma(f_{t,s}^{r_3})$	$\sigma(\Phi_{h,t}oldsymbol{eta}^{r_1}) imes\sigma(\Phi_{t,s}oldsymbol{eta}^{r_2}) - \sigma(\Phi_{h,s}^Toldsymbol{eta}^{r_3})\leq 0$	$\max(\sigma(\Phi_{h,t}oldsymbol{eta}^{r_1}) imes\sigma(\Phi_{t,s}oldsymbol{eta}^{r_2}) - \sigma(\Phi_{h,s}^Toldsymbol{eta}^{r_3})+\xi_{ ext{Co}},0)$

Table 1: Formulation and representation of rules (NC: Not considered for implementation).

KGE - RotatE

Translation

(c) RotatE: an example of modeling symmetric relations **r** with $r_i = -1$

Idea: Entities are vectors in complex space

(a) TransE models r as translation in real line.

(b) RotatE models r as rotation in complex plane.

Relations: rotations in complex space

Figure 1: Illustrations of TransE and RotatE with only 1 dimension of embedding.

Score function:

Loss & Optimization:

$$d_r(\mathbf{h}, \mathbf{t}) = \|\mathbf{h} \circ \mathbf{r} - \mathbf{t}\| \quad |r_i| = 1$$

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^n rac{1}{k} \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma),$$

Sun et al. RotatE: Knowledge Graph Embedding By Relational Rotation In Complex Space. ICLR 2019

KGE - RotatE & Patterns

Translation

Model	Score Function	Symmetry	Antisymmetry	Inversion	Composition
SE	$-\left\ oldsymbol{W}_{r,1}\mathbf{h}-oldsymbol{W}_{r,2}\mathbf{t} ight\ $	×	×	×	×
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	X	✓	1	1
TransX	$\ -\ g_{r,1}(\mathbf{h})+\mathbf{r}-g_{r,2}(\mathbf{t})\ $	1	✓	×	×
DistMult	$\langle {f h},{f r},{f t} angle$	 ✓ 	×	×	×
ComplEx	$\operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} angle)$	1	1	1	×
RotatE	$- \ \mathbf{h} \circ \mathbf{r} - \mathbf{t} \ $	1	1	1	✓

Table 2: The pattern modeling and inference abilities of several models.

Sun et al. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR 2019

KGE - ConvE

Minervini et al. Convolutional 2D Knowledge Graph Embeddings. AAAI 2018

^{26.10.2021}

KGE - CoKE

Figure 2: Overall framework of CoKE. An edge (left) or a path (right) is given as an input sequence, with an entity replaced by a special token [MASK]. The input is then fed into a stack of Transformer encoder blocks. The final hidden state corresponding to [MASK] is used to predict the target entity.

Vashishth et al. Composition-Based Multi-Relational Graph Convolutional Networks. ICLR 2020

KGE - Training

KGE - Training - Negative Sampling + Margin Loss

$$L(\Omega) = \sum_{(e_1, r, e_2) \in T} \sum_{(e'_1, r, e'_2) \in T'} \max\{S_{(e'_1, r, e'_2)} - S_{(e_1, r, e_2)} + 1, 0\}$$

Negative sampling: incorrect triples should have lower (higher) score than correct triples

Big Picture in \mathbb{R}^5

