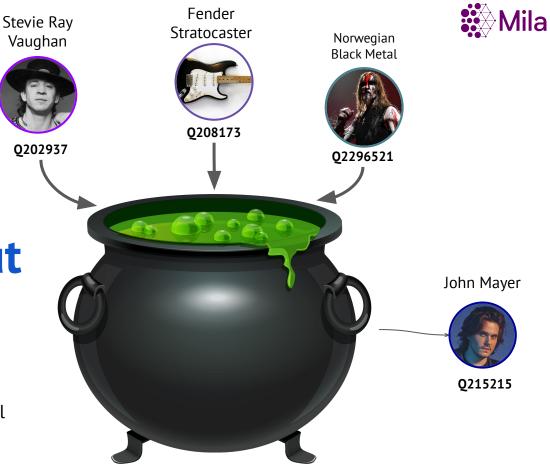


Michael Galkin Postdoctoral Fellow @ Mila & McGill

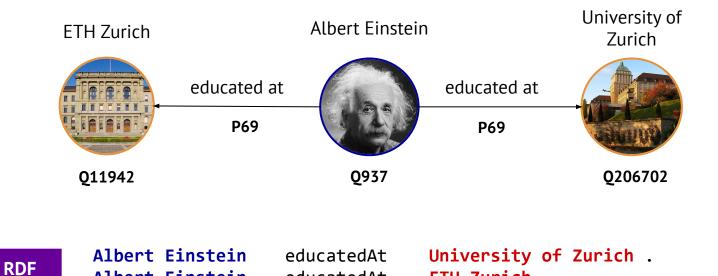


Plan

\rightarrow Graph Reasoning Tasks

- \rightarrow Featurization via Tokenization: NodePiece
- \rightarrow Featurization via Labeling Trick:
 - Neural Bellman-Ford and GNN-QE
- \rightarrow Past, Today, Future

Triple-based Knowledge Graphs

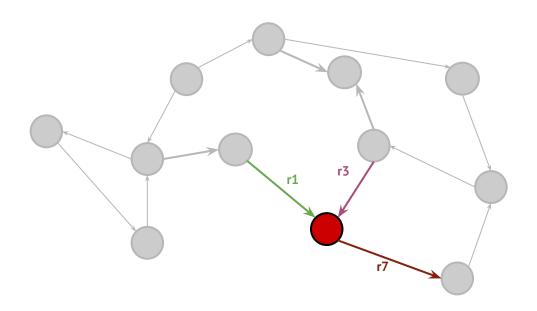


educatedAt

ETH Zurich .

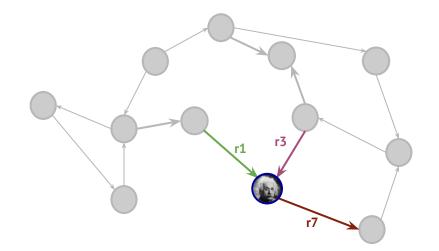
Albert Einstein

Knowledge Graphs: Setup



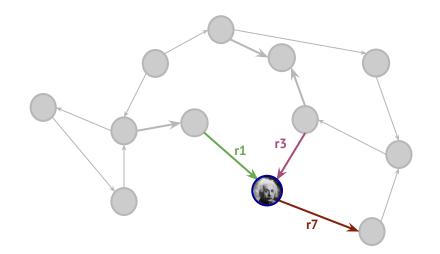
- Directed graphs
- Explicit relation types (learnable edge features)
- Input node features are **not** given

Graph Reasoning Tasks



• Node Classification

Graph Reasoning Tasks

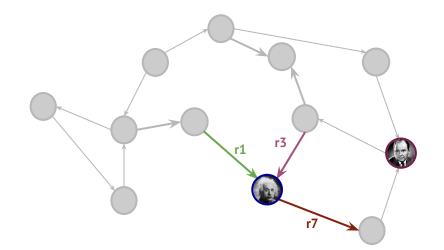


Node Classification

• Simple Link Prediction

? p(tail | head, relation)

Graph Reasoning Tasks

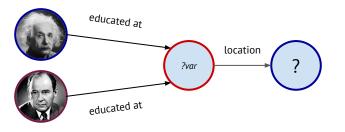


• Node Classification

• Simple Link Prediction

p(tail | head, relation)

• Complex Query Answering

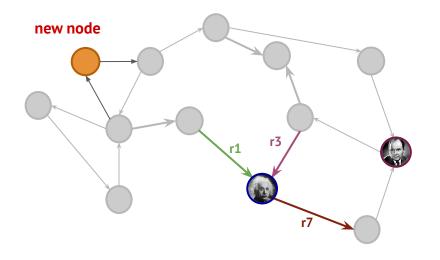


2

8

12.07.2022

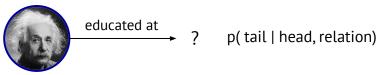
Inductive Graph Reasoning Tasks



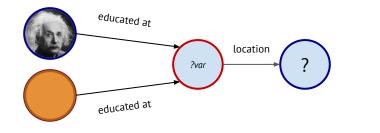
Extend the same tasks to **new, unseen** nodes arriving at inference time

• Node Classification

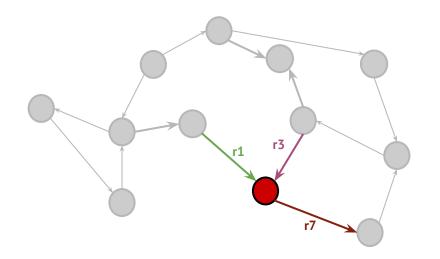
Simple Link Prediction



• Complex Query Answering



Knowledge Graphs: Setup

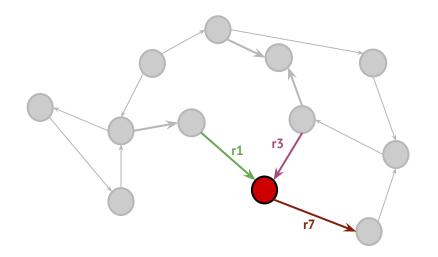


Any GNN-based pipeline needs features:

 $X' = \operatorname{GNN}(X, A, W)$

• Input node features are not given

Knowledge Graphs: Setup



- Input node features are not given
- How do we get inductive features?

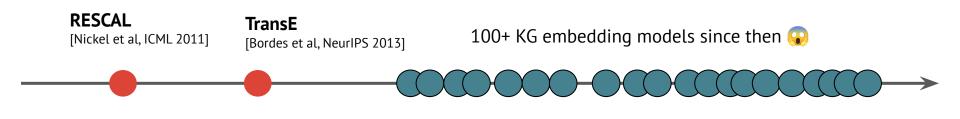
Any GNN-based pipeline needs features:

X' = GNN(X, A, W)

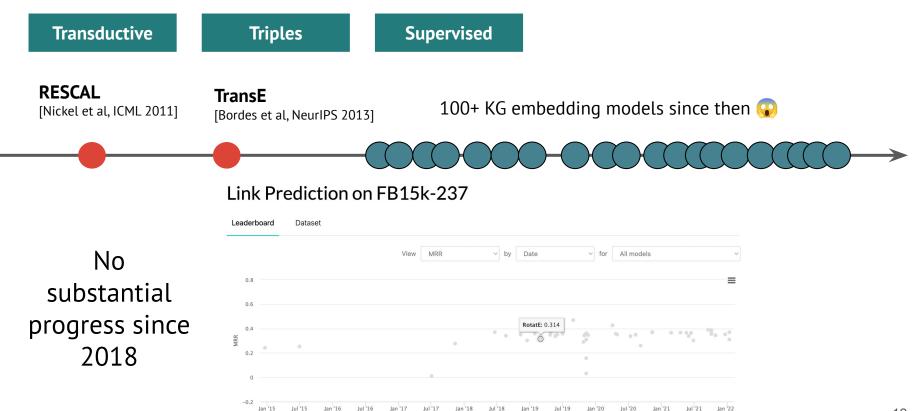
10 12.07.2022

Mila

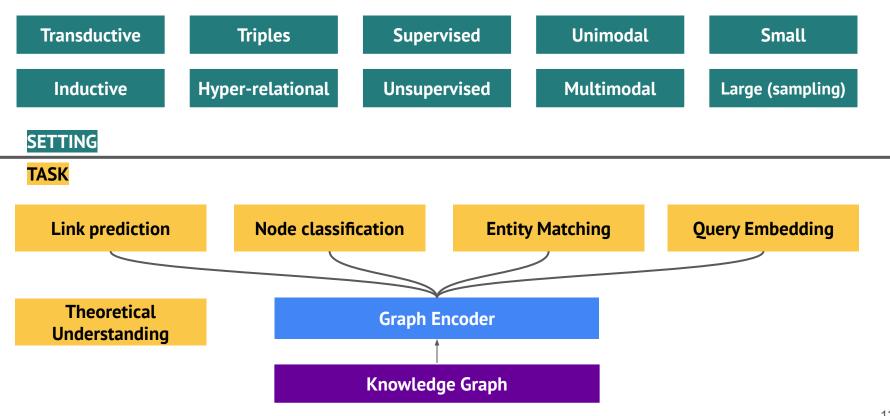
Brief History of Transductive Learning: 2011 -



Brief History of Transductive Learning: 2011 -



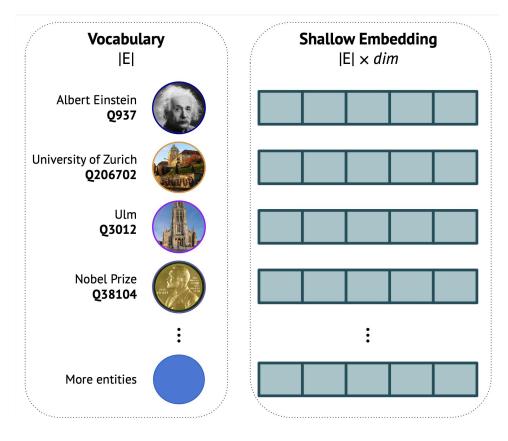
Big Picture in \mathbb{R}^5



Shallow Embedding

Looks like a Representation Learning challenge 🤔

Can we do better?

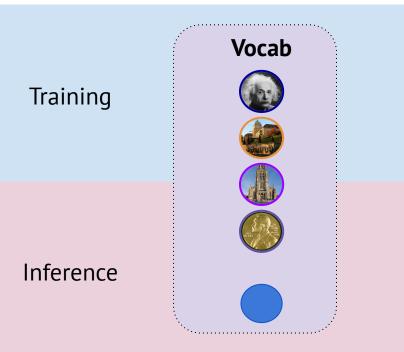


Transductive vs Inductive

Shallow embeddings

Transductive

Inductive



New, unseen nodes (entities)

Added to the seen graph

Completely new

inference graph

BERT-Large is ~340M params

OGB WikiKG: Just 2.5M nodes (June'21)

Leaderboard for ogbl-wikikg2

The MRR score on the test and validation sets. The higher, the better.

Package: >=1.2.4

Deprecated ogbl-wikikg leaderboard can be found here.

Rank	Method	Test MRR	Validation MRR	Contact	References	#Params	Hardware	Date
1	PairRE (200dim)	0.5208 ± 0.0027	0.5423 ± 0.0020	Linlin Chao	Paper, Code	500,334,800	Tesla P100 (16GB GPU)	Jan 28, 2021
2	RotatE (250dim)	0.4332 ± 0.0025	0.4353 ± 0.0028	Hongyu Ren – OGB team	Paper, Code	1,250,435,750	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021
3	TransE (500dim)	0.4256 ± 0.0030	0.4272 ± 0.0030	Hongyu Ren – OGB team	Paper, Code	1,250,569,500	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021
4	ComplEx (250dim)	0.4027 ± 0.0027	0.3759 ± 0.0016	Hongyu Ren – OGB team	Paper, Code	1,250,569,500	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021

BERT (340M params) - disruption in NLP KG embs (>1B params) - ↔

Life beyond shallow embedding?

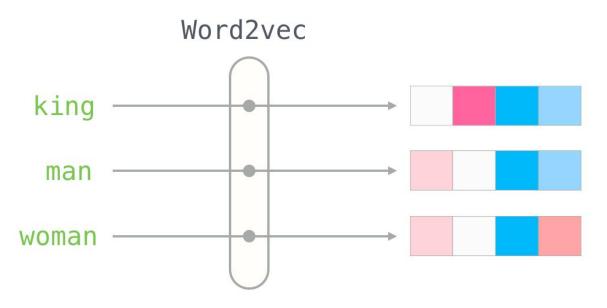
Do we really need to learn & store the whole shallow embedding matrix |*E*| *x dim* ?

Trying to fit a 100M x 200 tensor on a Tesla V100 ->

Plan

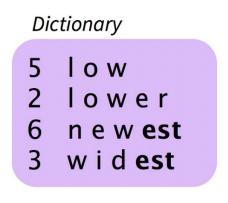
- \rightarrow Graph Reasoning Tasks
- \rightarrow Featurization via Tokenization: NodePiece
- \rightarrow Featurization via Labeling Trick:
 - Neural Bellman-Ford and GNN-QE
- \rightarrow Past, Today, Future

Back to 2014



Unseen words = [OOV] (out-of-vocabulary)

Byte-Pair Encoding / WordPiece



Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

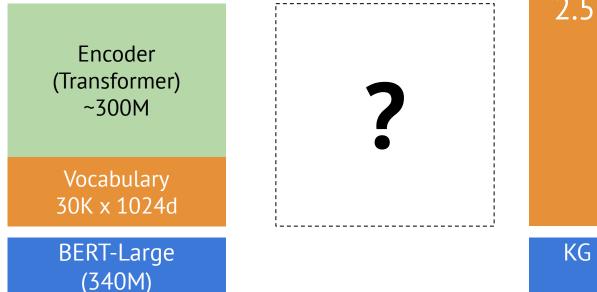
Byte-Pair Encoding / WordPiece

"I love tacos, apples, and tea!"

i	love	tacos	و	арр	##les	و	and	t	##e	##a	!
6	7	8	5	10	11	5	9	30	41	37	3

- Fixed-size vocab of subword units (30-50K)
- We can tokenize any unseen word

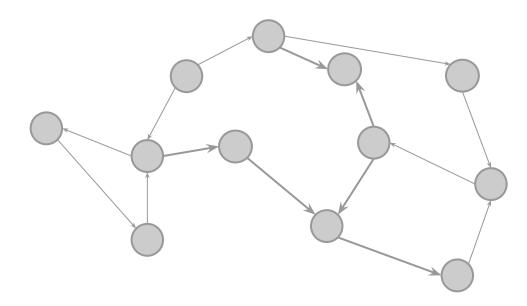
Tokenizing KGs



Vocabulary 2.5M x 500d

KG Embedding (1250M)

Tokenization + Graphs?



If nodes in a graph are "words", can we design a fixed-size vocab of "sub-word" units?

Tokenizing KGs

Vocabulary 2.5M x 500d

Encoder (Transformer) ~300M

Vocabulary 30K x 1024d

BERT-Large (340M) Vocab: K anchors, All relations

Encoder

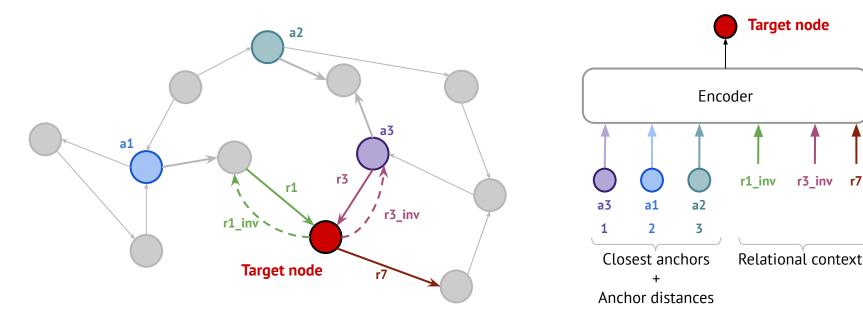
NodePiece

KG Embedding (1250M)

Tokenizing KGs

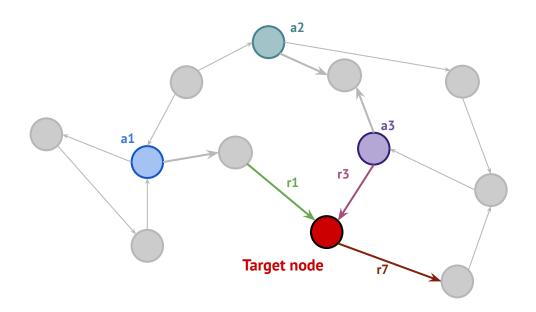
	Shallow embedding, only known words, otherwise OOV	Compositional representations, subword units		
Language	Word2vec, GloVe	Byte-Pair Encoding, WordPiece		
Graphs	All KG embedding algorithms (TransE, etc)	NodePiece		

NodePiece - "*subword units*" for KGs



Vocabulary = Anchors + Relation types Inductive out-of-the-box: unseen nodes are "tokenized" with the same Vocab

Tokenization Idea

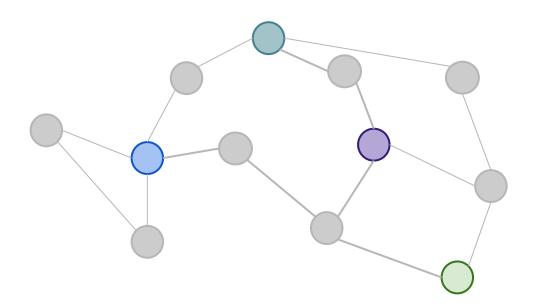


Represent an entity *e* as a set of **k most similar** tokens *t*

$$\max sim(e, \{t_i\}_{i\in k})$$

- Basic case: similarity as shortest path distance
- Can be generalized to non-Euclidean spaces

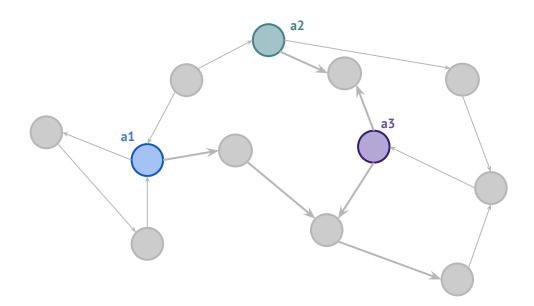
Anchor Node Selection



Ideal: Anchors = **Dominating Set**

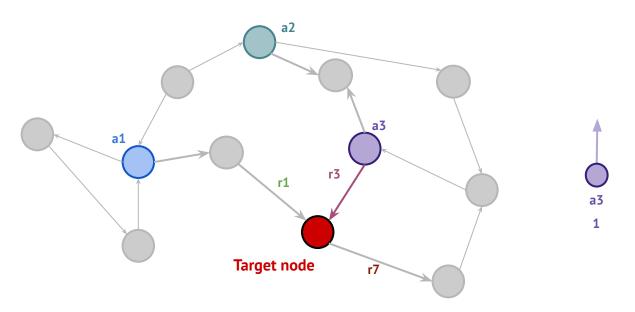
- Minimized distances
- 😰 NP complete
- Even k-hop Dominating Set is NP complete

Anchor Node Selection



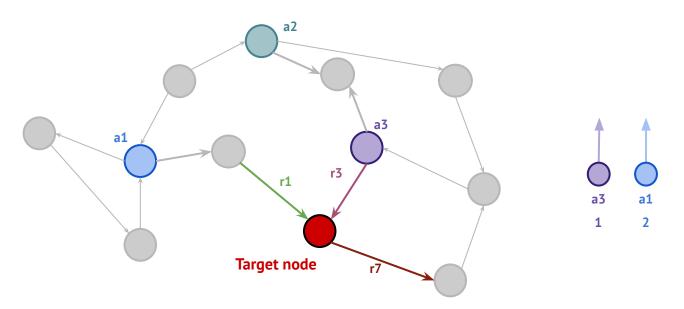
Current strategy:

40% top degrees 40% top PPR 20% random



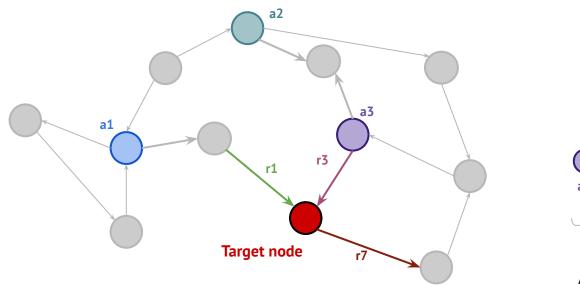
BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved



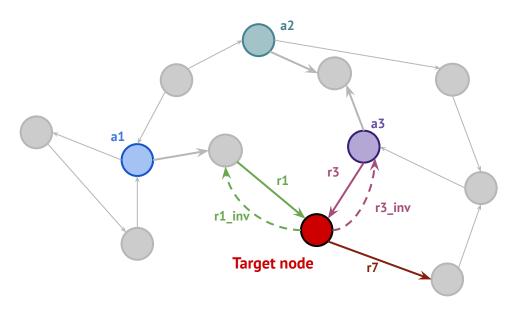
BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved



BFS from the target node until we reach |K| anchors

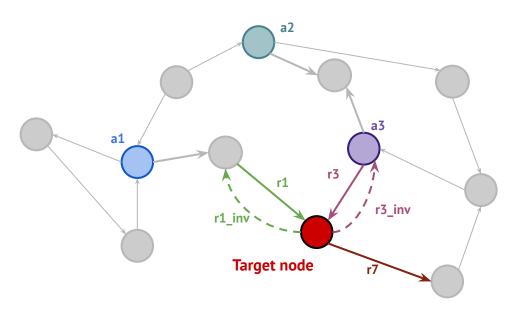
- Can be done in forward pass
- Can be pre-processed and saved

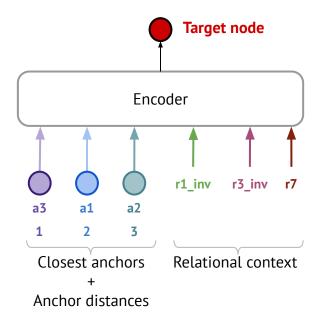


a3 a1 a2 1 2 3 Closest anchors + Anchor distances

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

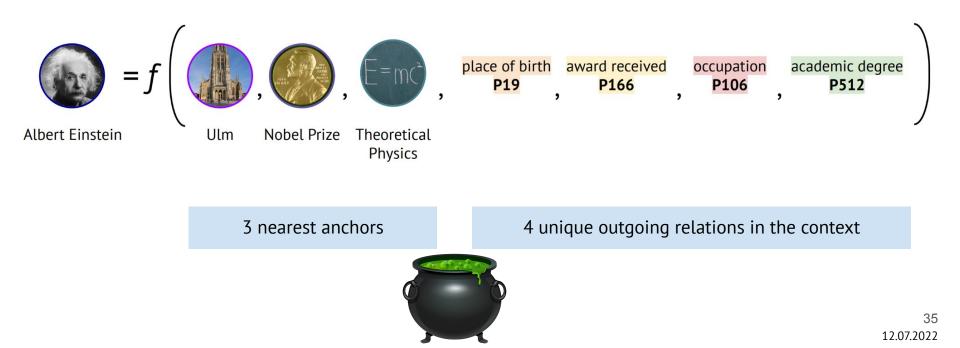




BFS from the target node until we reach |K| anchors

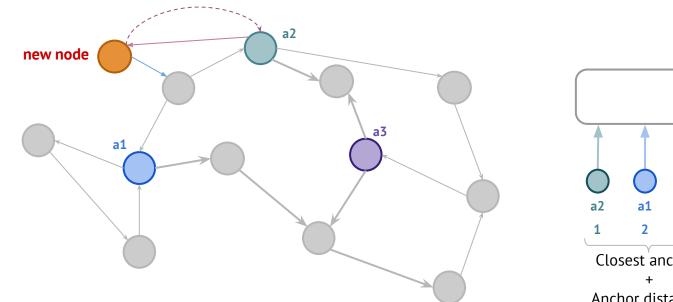
- Can be done in forward pass
- Can be pre-processed and saved

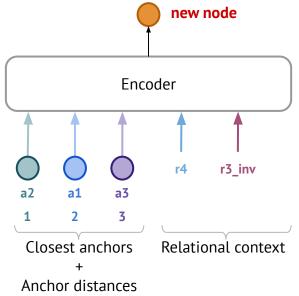
Tokenizing Einstein



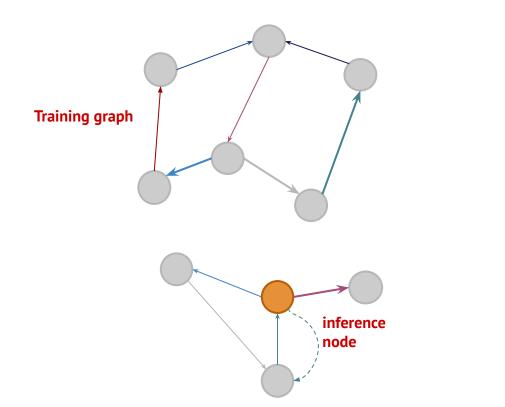
Tokenizing John Mayer

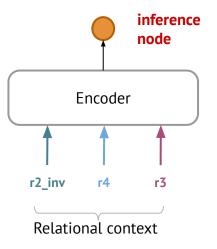
Unseen Node Tokenization



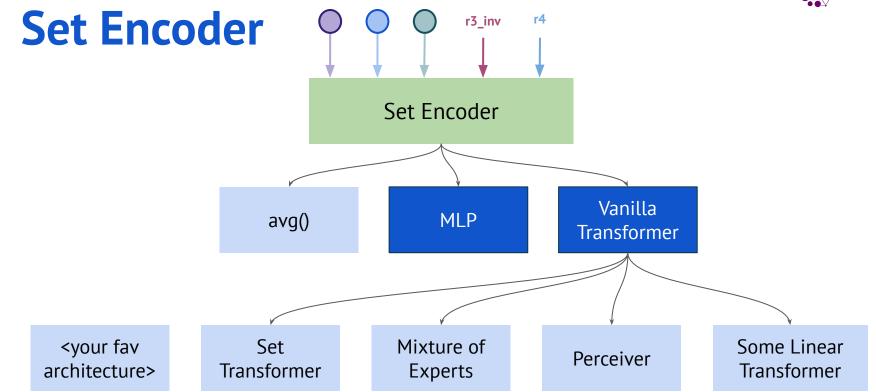


Inductive Node Tokenization



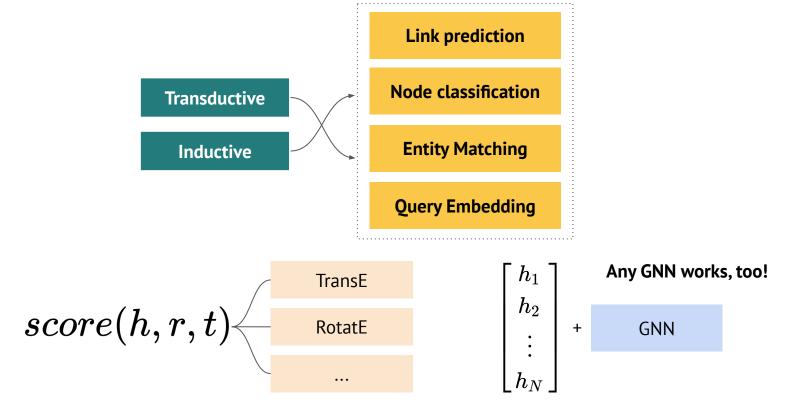


38 12.07.2022



Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

New Downstream Tasks



Transductive Link Prediction

WN18RR

FB15k-237

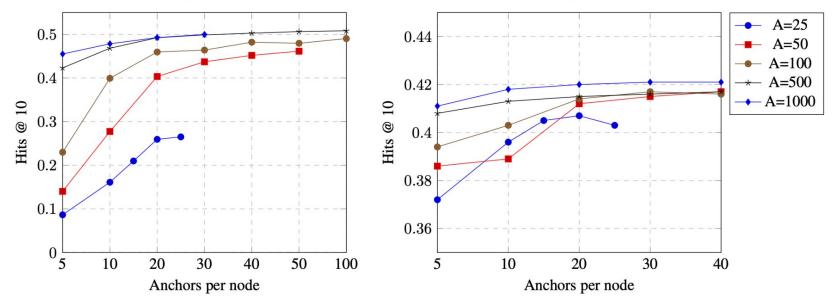


Figure 2: Combinations of total anchors A and anchors per node. Denser FB15k-237 saturates faster on smaller A while sparse WN18RR saturates at around 500 anchors.

Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

NodePiece Experiments: Summary

10x fewer parameters while retaining 90% of transductive LP
 2x better compared to shallow models of similar #params
 Relation Prediction and Node Classification: <u>no anchors is better</u>!
 Inductive out-of-the-box and very competitive

Table 6: Node classification results. |V| denotes vocabulary size (anchors + relations), #P is a total parameter count (millions).

			WD:	50K (5% labe)	led)	WD50K (10% labeled)			
	V	#P (M)	ROC-AUC	PRC-AUC	Hard Acc	ROC-AUC	PRC-AUC	Hard Acc	
MLP	46k + 1k	4.1	0.503	0.016	0.001	0.510	0.017	0.002	
CompGCN	46k + 1k	4.4	0.836	0.280	0.176	0.834	0.265	0.161	
NodePiece + GNN	50 + 1k	0.75	0.981	0.443	0.513	0.981	0.450	0.516	
- no rel. context	50 + 1k	0.64	0.982	0.446	0.534	0.982	0.449	0.530	
- no distances	50 + 1k	0.74	0.981	0.448	0.516	0.981	0.448	0.513	
- no anchors, rels only	0 + 1k	0.54	0.984	0.453	0.532	0.984	0.456	0.533	

Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

Yesterday this slide had a UMAP visualization

43 12.07.2022

OGB WikiKG 2 : NodePiece is New SOTA

Leaderboard for ogbl-wikikg2

The MRR score on the test and validation sets. The higher, the better.

Package: >=1.2.4

Deprecated ogbl-wikikg leaderboard can be found here.

Ext. Validation Rank Method data Test MRR MRR References **#Params** Hardware Contact Date StarGraph + No 0.7201 ± 0.7288 +Hongzhu Li (360AI) 86,762,146 Tesla A100(40GB) Paper, May 30, TripleRE 0.0011 0.0008 Code 2022 2 TranS No 0.6939 ± 0.7058 ± Xuanyu Zhang (DXM AI) 38,430,804 Tesla V100 (16GB) Apr 19, Paper. 0.0011 0.0018 Code 2022 3 TranS No $0.6882 \pm$ $0.6988 \pm$ Xuanyu Zhang (DXM AI) 19,215,402 Tesla V100 (16GB) Paper, Apr 28, 0.0019 0.0006 Code 2022 TripleRE + 0.6866 +0.6955 +Long Yu (360AI) 36,421,802 Feb 24. 4 No Paper, Tesla A100(40GB) NodePiece 0.0014 0.0008 2022 Code Baoxin Wang (HFL) 5 InterHT No 0.6779 ± 0.6893 ± Paper. 19,215,402 Tesla V100 (32GB) Feb 10. 0.0018 0.0015 Code 2022 6 TripleRE + No $0.6582 \pm$ $0.6616 \pm$ Long Yu (360AI) 7,289,002 Tesla A100(40GB) Dec 25, Paper, NodePiece 0.0020 0.0018 Code 2021 0.6561 ± Yihong Chen (UCL NLP & 7 ComplEx-RP No 0.6392 ± Paper, 250,167,400 Tesla V100 (32GB) Nov 23, 0.0070 (50dim) 0.0045 FAIR London) Code 2021

July 2022

NodePieceenabled models

> 44 12.07.2022

OGB WikiKG 2

Input graph: 2.5M nodes, 16M edges, ~1K edge types

- **20K** anchors (**< 1%** total nodes) -> 4M params
- 0 anchors / 0 node embeddings -> 0.476 MRR
- No relations in node hashes -> also OK
- "Word length" 32 tokens
 - 20 anchors per node
 - 12 relations in context

Table 4: Test MRR and parameterbudget on OGB WikiKG 2.

Model	#Params	MRR		
NP + AutoSF	6.9M	0.570 ± 0.003		
- rel. context	5.9M	0.592 ± 0.003		
- anc. dists	6.9M	0.570 ± 0.004		
- no anchors	1.3M	0.476 ± 0.001		
AutoSF	500M	0.546 ± 0.005		
PairRE	500M	0.521 ± 0.003		
RotatE	1250M	0.433 ± 0.002		
TransE	1250M	0.426 ± 0.003		

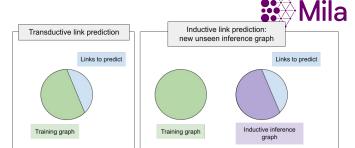
Inductive Link Prediction

Inference graphs are disjoint with training (new nodes)

NodePiece + CompGCN encoder = SOTA on many tasks on relation-rich graphs

Table 5: Inductive link prediction results, Hits@10. Best results are in **bold**, second best are <u>underlined</u>. † results taken from Teru et al. (2020). NBFNet results taken from Zhu et al. (2021).

Class	Method	FB15k-237			WN18RR				NELL-995				
		V1	V2	V3	V4	V1	V2	V3	V4	V1	V2	V3	V4
Path	Neural LP † DRUM † RuleN †	0.529 0.529 0.498	0.589 0.587 0.778	0.529 0.529 0.877	0.559 0.559 0.856	0.744 0.744 0.809	0.689 0.689 0.782	0.462 0.462 0.534	0.671 0.671 0.716	0.408 0.194 0.535	0.787 0.786 0.818	0.827 0.827 0.773	$ \begin{array}{r} 0.806 \\ 0.806 \\ 0.614 \end{array} $
GNN	GraIL † NBFNet NP + CompGCN	0.642 <u>0.834</u> 0.873	0.818 0.949 0.939	0.828 0.951 0.944	0.893 0.960 0.949	0.825 0.948 <u>0.830</u>	0.787 0.905 0.886	0.584 0.893 <u>0.785</u>	0.734 0.890 <u>0.807</u>	0.595 - 0.890	0.933 <u>0.901</u>	<u>0.914</u> - 0.936	0.732 0.893



Plan

- \rightarrow Graph Reasoning Tasks
- \rightarrow Featurization via Tokenization: NodePiece
- → Featurization via Labeling Trick: Neural Bellman-Ford and GNN-QE
- \rightarrow Past, Today, Future

The Labeling Trick

Idea: for each link we predict, instantiate a graph with unique initial node labels (features)

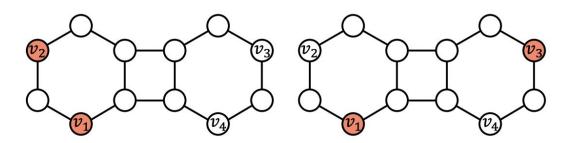


Figure 2: When we predict (v_1, v_2) , we will label these two nodes differently from the rest, so that a GNN is aware of the target link when learning v_1 and v_2 's representations. Similarly, when predicting (v_1, v_3) , nodes v_1 and v_3 will be labeled differently. This way, the representation of v_2 in the left graph will be different from that of v_3 in the right graph, enabling GNNs to distinguish the non-isomorphic links (v_1, v_2) and (v_1, v_3) .

The Labeling Trick

Idea: for **each** link we predict, **instantiate** a graph with **unique** initial node labels (**features**)

- SEAL (homogeneous link prediction, still SOTA on OGB)
- GralL (KG link prediction, first inductive method)
- Neural Bellman-Ford (homogeneous + KG link prediction, current SOTA)

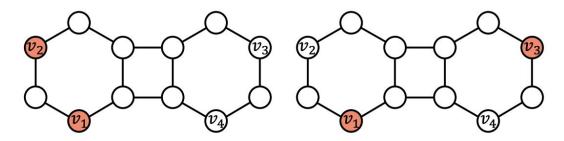
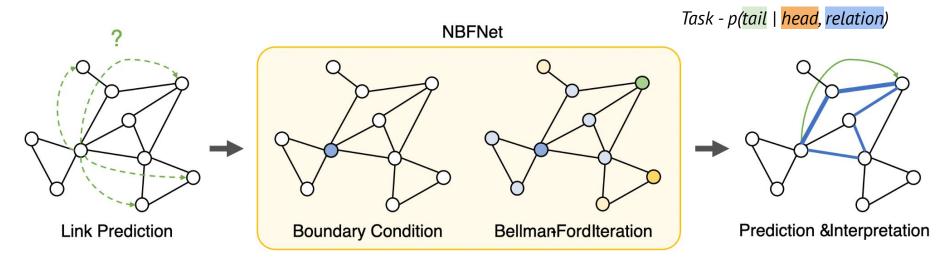


Figure 2: When we predict (v_1, v_2) , we will label these two nodes differently from the rest, so that a GNN is aware of the target link when learning v_1 and v_2 's representations. Similarly, when predicting (v_1, v_3) , nodes v_1 and v_3 will be labeled differently. This way, the representation of v_2 in the left graph will be different from that of v_3 in the right graph, enabling GNNs to distinguish the non-isomorphic links (v_1, v_2) and (v_1, v_3) .

Neural Bellman-Ford



Idea:

- 1. Relations do not change at inference -> we can learn relation (edge type) embeddings
- 2. Initialize head node feature with the learnable relation vector (query)
- 3. Propage for L layers, take final representations as final node features

Zhu et al. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021

Neural Bellman-Ford

Table 4: Homogeneous graph link prediction results. Results of VGAE and S-VGAE are taken from their original papers [32, 12].

Class	Method	Cor	a	Cites	eer	PubMed		
Class	wieniou	AUROC	AP	AUROC	AP	AUROC	AP	
Path-based	Katz Index [30]	0.834	0.889	0.768	0.810	0.757	0.856	
	Personalized PageRank [42]	0.845	0.899	0.762	0.814	0.763	0.860	
	SimRank [28]	0.838	0.888	0.755	0.805	0.743	0.829	
Embeddings	DeepWalk [43]	0.831	0.850	0.805	0.836	0.844	0.841	
	LINE [53]	0.844	0.876	0.791	0.826	0.849	0.888	
	node2vec [17]	0.872	0.879	0.838	0.868	0.891	0.914	
GNNs	VGAE [32]	0.914	0.926	0.908	0.920	0.944	0.947	
	S-VGAE [12]	0.941	0.941	0.947	0.952	0.960	0.960	
	SEAL [73]	0.933	0.942	0.905	0.924	0.978	0.979	
	TLC-GNN [67]	0.934	0.931	0.909	0.916	0.970	0.968	
	NBFNet	0.956	0.962	0.923	0.936	0.983	0.982	

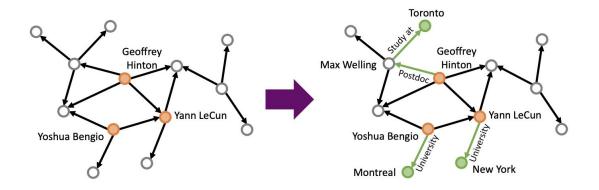
GNN-QE: NBFNet + Multi-hop Reasoning

Each variable is a fuzzy set of entities, where each element in the set has a probability.

- Each relation projection (simple link prediction) step is modelled by a L-layer NBFNet
- NBFNet returns a probability distribution (scalars) over all entities (fuzzy set)

GNN-QE: NBFNet + Multi-hop Reasoning

Neural Relation Projection *University*()

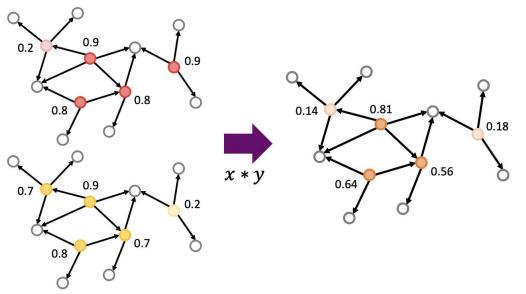


Use a **GNN** to propagate the input fuzzy set and get the output fuzzy set.

The relation *University* is used to guide the propagation towards paths that can predict the relation *University*.

GNN-QE: NBFNet + Multi-hop Reasoning

Fuzzy Logic Operations 🛛 🔵 \land 🔵



Use **product fuzzy logic** to model logic operations (e.g. \neg , \land , \lor) over fuzzy sets.

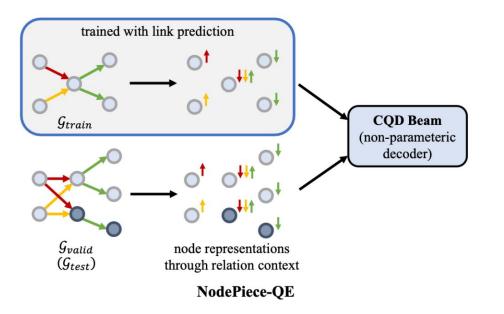
 Logical operators as algebraic operations

 Resulting probability distribution is used as scalar weights for the next hop graph initialization

The Essence of Inductiveness

What is **invariant** in inductive reasoning setups? **Relation types**

• NodePiece - parameterization through relational context

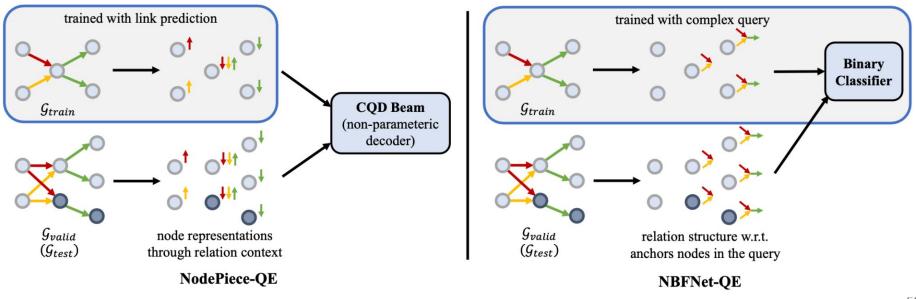


The Essence of Inductiveness

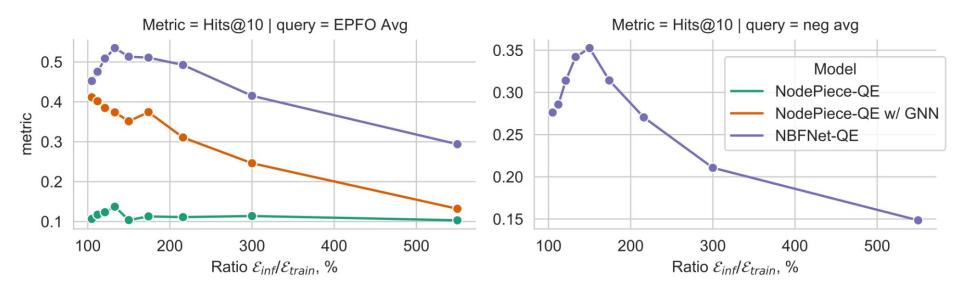
What is invariant in inductive reasoning setups? Relation types

- NodePiece parameterization through relational context
- GNN-QE

- parameterization through relational structure



Inductive Generalization to Larger Test Graphs is Still a Problem



Plan

- \rightarrow Graph Reasoning Tasks
- \rightarrow Featurization via Tokenization: NodePiece
- \rightarrow Featurization via Labeling Trick:
 - Neural Bellman-Ford and GNN-QE
- \rightarrow Past, Today, Future

Space of KG Tasks in 2019

Transductive Triples

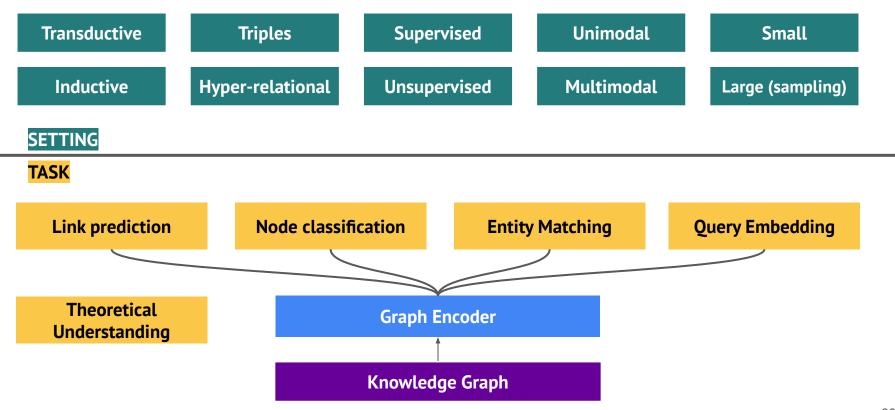
SETTING

TASK

Link prediction

Mila

Space of KG Tasks Today



12.07.2022

Future: Neural Graph Databases

Entities Relations (Montreal, location, Quebec) Graphs Application (Quebec, location, Canada) (molecules) (Canada, bordersWith, USA) Logical Oueries Application No symbolic storage • Neural Query Engine Embedding-based storage top-K Logical Query Answering Inferring Missing Links MIPS Neural Retriever Retrieval Complex Query Answering Task-specific Decoders Updatable 61

O&A Time!

@michael galkin

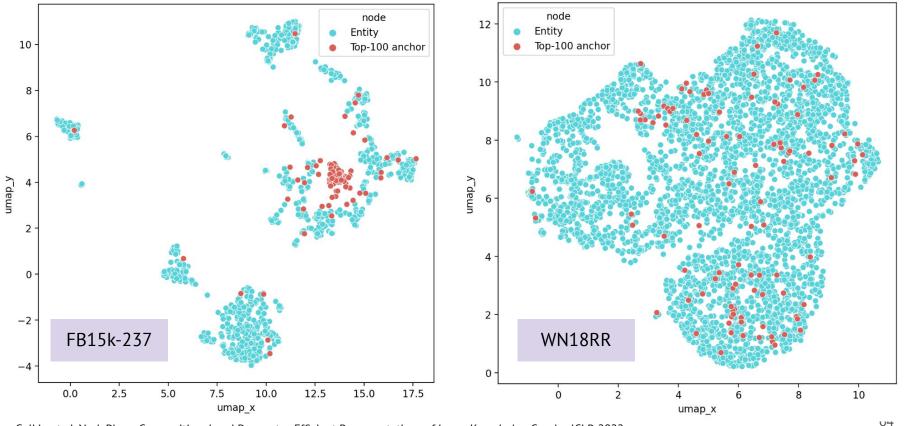
M @mgalkin

- mikhail.galkin@mila.quebec
- migalkin.github.io

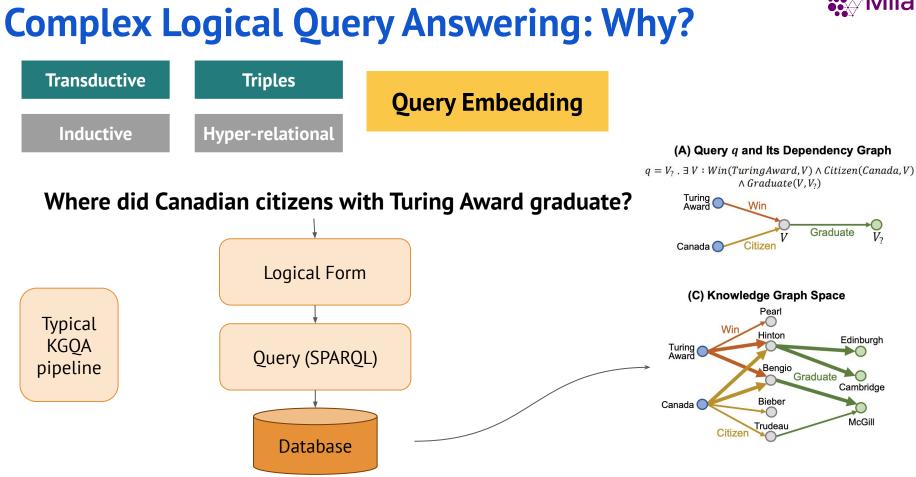
Backup

63 12.07.2022

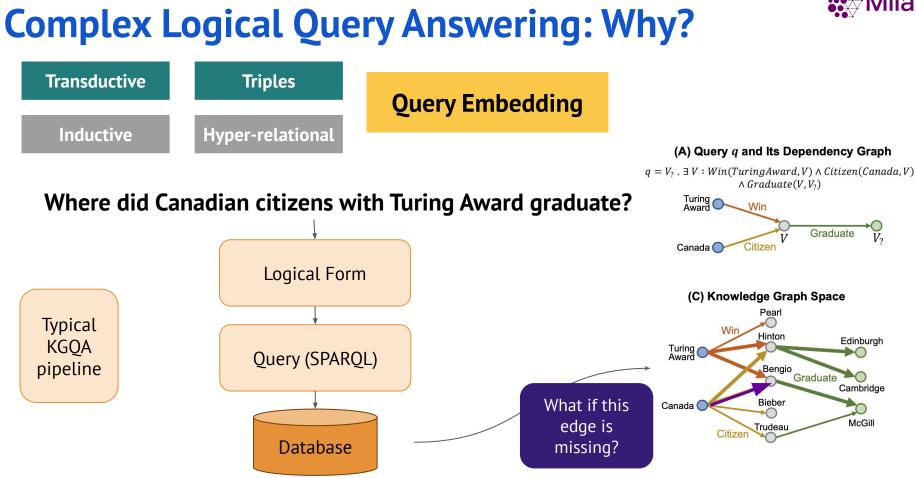
Visualizations: Anchors + Entities



Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022



Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

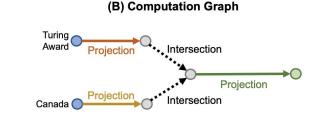


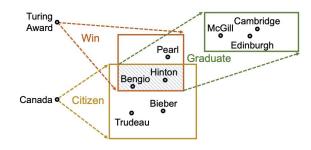
Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Complex Logical Query Answering

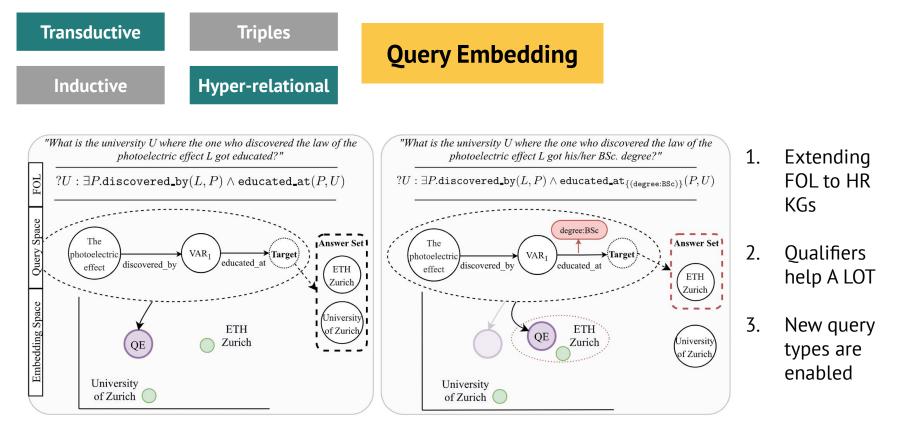
- Databases assume KGs are complete

 In reality they are not
- We want to answer FOL queries over incomplete graphs with neural operators
- Embed a query in a latent space, MIPS decoder for kNN answers





StarQE: Complex Logical Query Answering on HR KGs



StarQE for Logical Queries: Summary

- Extend FOL to hyper-relational graphs with qualifiers
- Enabling new query types (eg, joins over qualifier entities)
- Robust to inner representation: RDF* vs reified RDF
- Qualifiers help A LOT in answering complex queries

