

- Research Institute w/ UdeM, McGill, HEC Montreal, Polytechnique Montreal
 - Core Machine Learning, Deep Learning, Reinforcement Learning, NLP, Graph Learning
 - 100+ papers / year at top ML/AI conferences
- 900+ student researchers
- 40+ professors and CIFAR chairs
- 70+ industry partners
- 40+ Mila-affiliated startups

Plan

→ Vanilla KG Representation Learning: Re-cap

- \rightarrow The New Big Picture
- → NodePiece: Beyond Shallow Embeddings
- \rightarrow Hyper-Relational KGs
- \rightarrow Inductive Link Prediction with HR KGs
- \rightarrow Complex Query Answering with HR KGs
- \rightarrow Past, Today, Future

Triple-based Knowledge Graphs

RDFAlbert EinsteineducatedAtUniversity of Zurich .Albert EinsteineducatedAtETH Zurich .

Knowledge Graphs: Setup

- Directed graphs
- Explicit relation types (learnable edge features)
- Input node features are **not** given

12.04.2022

Geometric Deep Learning

Study of symmetries and invariances that unifies many deep learning architectures

Illustration of geometric priors: the input signal (image $x \in \mathcal{X}(\Omega)$) is defined on the domain (grid Ω), whose symmetry (translation group \mathcal{O}) acts in the signal space through the group representation $\rho(q)$ (shift operator). Making an assumption on how the functions f (e.g. image classifier) interacts with the group restricts the hypothesis class.

Plan

- \rightarrow Vanilla Triple KGs: Re-cap
- \rightarrow The New Big Picture
- → NodePiece: Beyond Shallow Embeddings
- \rightarrow Hyper-Relational KGs
- \rightarrow Inductive Link Prediction with HR KGs
- \rightarrow Complex Query Answering with HR KGs
- \rightarrow Past, Today, Future

Big Picture in \mathbb{R}^5

Big Picture in \mathbb{R}^5

Plan

- \rightarrow Vanilla Triple KGs: Re-cap
- \rightarrow The New Big Picture
- → NodePiece: Beyond Shallow Embeddings
- \rightarrow Hyper-Relational KGs
- \rightarrow Inductive Link Prediction with HR KGs
- \rightarrow Complex Query Answering with HR KGs
- \rightarrow Past, Today, Future

The ImageNet Moment for KGs

Self-supervised pre-training on a LARGE graph Fine-tuning on a downstream task

Graph ML

NLP

Vision

The ImageNet Moment for KGs

Self-supervised pre-training on a LARGE graph

Wikidata: 100M nodes Embs: [100M, dim] ?

PyTorch BigGraph

~200 GB

Fine-tuning on a downstream task

Graph ML

NLP

Vision

Shallow Embedding

Looks like a Representation Learning challenge 🤔

Can we do better?

Transductive vs Inductive

Shallow embeddings

Transductive

Inductive

New, unseen nodes (entities)

• Added to the seen graph

Completely new inference graph

BERT-Large is ~340M params

OGB WikiKG: Just 2.5M nodes (June'21)

Leaderboard for ogbl-wikikg2

The MRR score on the test and validation sets. The higher, the better.

Package: >=1.2.4

Deprecated ogbl-wikikg leaderboard can be found here.

Rank	Method	Test MRR	Validation MRR	Contact	References	#Params	Hardware	Date
1	PairRE (200dim)	0.5208 ± 0.0027	0.5423 ± 0.0020	Linlin Chao	Paper, Code	500,334,800	Tesla P100 (16GB GPU)	Jan 28, 2021
2	RotatE (250dim)	0.4332 ± 0.0025	0.4353 ± 0.0028	Hongyu Ren – OGB team	Paper, Code	1,250,435,750	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021
3	TransE (500dim)	0.4256 ± 0.0030	0.4272 ± 0.0030	Hongyu Ren – OGB team	Paper, Code	1,250,569,500	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021
4	ComplEx (250dim)	0.4027 ± 0.0027	0.3759 ± 0.0016	Hongyu Ren – OGB team	Paper, Code	1,250,569,500	Quadro RTX 8000 (45GB GPU)	Jan 23, 2021

BERT (340M params) - disruption in NLP KG embs (>1B params) - ↔

Life beyond shallow embedding?

Do we really need to learn & store the whole shallow embedding matrix |*E*| *x dim* ?

Trying to fit a 100M x 200 tensor on a Tesla V100 ->

20 12.04.2022

Back to 2014

Unseen words = [OOV] (out-of-vocabulary)

Byte-Pair Encoding / WordPiece

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

Byte-Pair Encoding vocabulary. Source: Sennrich et al and CS224N

Tokenization + Graphs?

If nodes in a graph are "words", can we design a fixed-size vocab of "sub-word" units?

Tokenizing KGs

	<mark>Shallow</mark> embedding, only known words, otherwise OOV	Compositional representations, subword units
Language	Word2vec, GloVe	Byte-Pair Encoding, WordPiece
Graphs	All KG embedding algorithms (TransE, etc)	NodePiece

NodePiece - "*subword units*" for KGs

Vocabulary = Anchors + Relation types Inductive out-of-the-box: unseen nodes are "tokenized" with the same Vocab

Tokenizing Einstein

Unseen Node Tokenization

Inductive Node Tokenization

New Downstream Tasks

New Downstream Tasks

OGB WikiKG 2 : NodePiece is New SOTA

Leaderboard for ogbl-wikikg2

The MRR score on the test and validation sets. The higher, the better.

Package: >=1.2.4

Deprecated ogbl-wikikg leaderboard can be found here.

February 2022

Rank	Method	Ext. data	Test MRR	Validation MRR	Contact	References	#Params	Hardware	Date
1	TripleRE + NodePiece	No	0.6866 ± 0.0014	0.6955 ± 0.0008	Long Yu (360AI)	Paper, Code	36,421,802	Tesla A100(40GB)	Feb 24, 2022
2	InterHT	No	0.6779 ± 0.0018	0.6893 ± 0.0015	Baoxin Wang (HFL)	Paper, Code	19,215,402	Tesla V100 (32GB)	Feb 10, 2022
3	TripleRE + NodePiece	No	0.6582 ± 0.0020	0.6616 ± 0.0018	Long Yu (360AI)	Paper, Code	7,289,002	Tesla A100(40GB)	Dec 25, 2021
4	ComplEx-RP (50dim)	No	0.6392 ± 0.0045	0.6561 ± 0.0070	Yihong Chen (UCL NLP & FAIR London)	Paper, Code	250,167,400	Tesla V100 (32GB)	Nov 23, 2021
5	tripleRE	No	0.5794 ± 0.0020	0.6045 ± 0.0024	Long Yu (360AI)	Paper, Code	500,763,337	Tesla P40(24GB)	Dec 17, 2021
6	NodePiece + AutoSF	No	0.5703 ± 0.0035	0.5806 ± 0.0047	Mikhail Galkin (Mila)	Paper, Code	6,860,602	Tesla V100 (32 GB)	Jul 17, 2021

NodePieceenabled models

31 12.04.2022

Inductive Link Prediction Challenge 2022

https://github.com/pykeen/ilpc2022

ILPC'22 Small

Split	Entities	Relations	Triples
Train	10,230	96	78,616
Inference	6,653	96 (subset)	20,960
Inference validation	6,653	96 (subset)	2,908
Inference test	6,653	96 (subset)	2,902
Hold-out test set	6,653	96 (subset)	2,894

ILPC'22 Large

Split	Entities	Relations	Triples
Train	46,626	130	202,446
Inference	29,246	130 (subset)	77,044
Inference validation	29,246	130 (subset)	10,179
Inference test	29,246	130 (subset)	10,184
Hold-out test set	29,246	130 (subset)	10,172

Model	MRR	H@100	H@10	H@5	H@3	H@1	AMRI
InductiveNodePieceGNN	0.1326	0.4705	0.2509	0.1899	0.1396	0.0763	0.730
InductiveNodePiece	0.0381	0.4678	0.0917	0.0500	0.0219	0.007	0.666

Plan

- \rightarrow Vanilla Triple KGs: Re-cap
- \rightarrow The New Big Picture
- → NodePiece: Beyond Shallow Embeddings
- \rightarrow Hyper-Relational KGs
- \rightarrow Inductive Link Prediction with HR KGs
- \rightarrow Complex Query Answering with HR KGs
- \rightarrow Past, Today, Future

Triple-based Knowledge Graphs

Hyper-relational KGs

Hyper-relational KGs & RDF*

RDF*

<< Albert Einstein educatedAt University of Z	Zurich >>
academic degree Doctorate;	
academic major Physics .	Statements with Qualifiers in Wikidata
<< Albert Einstein educatedAt ETH Zurich >>	Entity-relation Edge Attributes
Academic degree Bachelor ;	Edge Instances
Academic major Mathematics .	

Hyper-relational KGs & RDF*

Where did Albert Einstein receive his degree in physics?

GNN Encoders

38 12.04.2022

StarE: GNN architecture for HR KGs

Enabling New Tasks

StarE Summary

- A GNN encoder for embedding HR KGs and many downstream tasks
- Sparse Qualifier Representation
- As small as 1 qualifier per triple gives boosts
- The more qualifiers the better

Hyper-relational KGs + Inductive Link Prediction

Ali et al. Improving Inductive Link Prediction Using Hyper-Relational Facts. ISWC 2021, Best Research Paper Award

Mila

+ Inductive StarE Summary

- Qualifiers help in Inductive Link Prediction
- Features as encoded RoBERTa entity descriptions are good enough
- Some qualifiers give a lot of boost, some do not

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Ren et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020

Complex Logical Query Answering

- Databases assume KGs are complete

 In reality they are not
- We want to answer FOL queries over incomplete graphs with neural operators
- Embed a query in a latent space, MIPS decoder for kNN answers

StarQE: Complex Logical Query Answering on HR KGs

***** StarQE for Logical Queries: Summary

- Extend FOL to hyper-relational graphs with qualifiers
- Enabling new query types (eg, joins over qualifier entities)
- Robust to inner representation: RDF* vs reified RDF
- Qualifiers help A LOT in answering complex queries

Plan

- \rightarrow Vanilla Triple KGs: Re-cap
- \rightarrow The New Big Picture
- \rightarrow Hyper-Relational KGs
- \rightarrow Inductive Link Prediction with HR KGs
- \rightarrow Complex Query Answering with HR KGs
- \rightarrow Past, Today, Future

Space of KG Tasks in 2019

Transductive Triples

SETTING

TASK

Link prediction

Mila

Space of KG Tasks Today

12.04.2022

Future: Neural Graph Databases

Entities Relations (Montreal, location, Quebec) Graphs Application (Quebec, location, Canada) (molecules) (Canada, bordersWith, USA) Logical Oueries Application No symbolic storage • Neural Query Engine Embedding-based storage top-K Logical Query Answering Inferring Missing Links MIPS Neural Retriever Retrieval Complex Query Answering Task-specific Decoders Updatable 52

Acknowledgements and Papers

- Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, Jens Lehmann.
 Message Passing for Hyper-Relational Knowledge Graphs. EMNLP 2020
- Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, Jens Lehmann. Improving Inductive Link Prediction Using Hyper-relational Facts. ISWC 2021. Best Research Paper Award
- 3. Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, **Mikhail Galkin**. **Query Embedding on Hyper-relational Knowledge Graphs**. ICLR 2022
- 4. Mikhail Galkin, Etienne Denis, Jiapeng Wu, William L Hamilton. NodePiece:
 Compositional and Parameter-Efficient Representations of Large Knowledge Graphs.
 ICLR 2022

O&A Time!

@michael galkin

- M @mgalkin

- mikhail.galkin@mila.quebec
- migalkin.github.io

Anchor Node Selection

Current strategy:

40% top degrees 40% top PPR 20% random

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

a3 a1 a2 1 2 3 Closest anchors + Anchor distances

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

BFS from the target node until we reach |K| anchors

- Can be done in forward pass
- Can be pre-processed and saved

Transductive Link Prediction

WN18RR

FB15k-237

Figure 2: Combinations of total anchors A and anchors per node. Denser FB15k-237 saturates faster on smaller A while sparse WN18RR saturates at around 500 anchors.

NodePiece Experiments: Summary

10x fewer parameters while retaining 90% of transductive LP
 2x better compared to shallow models of similar #params
 Relation Prediction and Node Classification: <u>no anchors is better</u>!
 Inductive out-of-the-box and very competitive

Table 6: Node classification results. |V| denotes vocabulary size (anchors + relations), #P is a total parameter count (millions).

			WD:	50K (5% labe	led)	WD50K (10% labeled)			
	V	#P (M)	ROC-AUC	PRC-AUC	Hard Acc	ROC-AUC	PRC-AUC	Hard Acc	
MLP	46k + 1k	4.1	0.503	0.016	0.001	0.510	0.017	0.002	
CompGCN	46k + 1k	4.4	0.836	0.280	0.176	0.834	0.265	0.161	
NodePiece + GNN	50 + 1k	0.75	0.981	0.443	0.513	0.981	0.450	0.516	
- no rel. context	50 + 1k	0.64	0.982	0.446	0.534	0.982	0.449	0.530	
- no distances	50 + 1k	0.74	0.981	0.448	0.516	0.981	0.448	0.513	
- no anchors, rels only	0 + 1k	0.54	0.984	0.453	0.532	0.984	0.456	0.533	

Visualizations: Anchors + Entities

Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

Inductive Link Prediction

Inference graphs are disjoint with training (new nodes)

NodePiece + CompGCN encoder = SOTA on many tasks on relation-rich graphs

Table 5: Inductive link prediction results, Hits@10. Best results are in **bold**, second best are <u>underlined</u>. † results taken from Teru et al. (2020). NBFNet results taken from Zhu et al. (2021).

Class	Method	FB15k-237			WN18RR				NELL-995				
		V1	V2	V3	V4	V1	V2	V3	V4	V1	V2	V3	V4
Path	Neural LP †	0.529	0.589	0.529	0.559	0.744	0.689	0.462	0.671	0.408	0.787	0.827	0.806
	DRUM †	0.529	0.587	0.529	0.559	0.744	0.689	0.462	0.671	0.194	0.786	0.827	0.806
	RuleN †	0.498	0.778	0.877	0.856	0.809	0.782	0.534	0.716	0.535	0.818	0.773	0.614
GNN	GraIL †	0.642	0.818	0.828	0.893	0.825	0.787	0.584	0.734	0.595	0.933	<u>0.914</u>	0.732
	NBFNet	<u>0.834</u>	0.949	0.951	0.960	0.948	0.905	0.893	0.890	-	<u>-</u>	-	-
	NP + CompGCN	0.873	0.939	0.944	0.949	<u>0.830</u>	0.886	<u>0.785</u>	<u>0.807</u>	0.890	<u>0.901</u>	0.936	0.893

