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Plan for today
LOG 2022 accepted papers:

● Weisfeiler and Leman Go Relational
● Taxonomy of Benchmarks in Graph Representation Learning

NeurIPS 2022 papers:

● Inductive Logical Query Answering in Knowledge Graphs
● A Recipe for a General, Powerful, and Scalable Graph 

Transformers
● Long-Range Graph Benchmark
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Weisfeiler and Leman Go Relational
Pablo Barcelo, Mikhail Galkin, Christopher Morris, Miguel Romero Oorth
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What’s common between KG and molecular graph?

4

WL Go Relational
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What’s common between KG and molecular graph?

5

WL Go Relational

Both are re
latio

nal g
raphs
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So how expressive are relational GNNs?
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Some places our guys Weisfeiler and Leman 
have been to recently:
✅ Neural
✅ Sparse
✅ Topological
✅ Cellular
✅ Hyperbolic
✅ Infinite
❌ Relational :( - time to fix that! B. WeisfeilerA. Leman
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Relational WL Iteration
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Relational WL Findings

✅ 1-RWL > 1-WL, provably

✅ Relational GCN (R-GCN) ≣ CompGCN and 
bounded by 1-RWL

✅ Multiplicative message functions is the best
(generally, those that capture vector scaling)
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Relational WL Findings

❌ BAD

👍 GOOD



Taxonomy of Benchmarks in
Graph Representation Learning

Renming Liu3, Semih Cantürk1,2, 
Frederik Wenkel1,2, Sarah McGuire3, Xinyi Wang3, 
Anna Little4, Leslie O’Bray5, Michael Perlmutter6, Bastian Rieck7, 
Matthew Hirn3, Guy Wolf1,2, and Ladislav Rampášek1,2 

1Mila - Quebec AI Institute, 2Université de Montréal, 3Michigan State University, 4University of Utah, 
5ETH Zürich, 6University of California, Los Angeles, 7Helmholtz Zentrum München 

Learning on Graphs (LoG) 2022



● Graph Neural Network (GNN) development 
is a hot topic!

○ GCN, GAT, GraphSAGE, GIN…

○ Recently: Graph Transformers, k-GNNs…

Motivation

Illustration credit: Bronstein, M.M., Bruna, J., Cohen, T. and 
Veličković, P., 2021. Geometric deep learning: Grids, 
groups, graphs, geodesics, and gauges. arXiv:2104.13478.

● With emerging collections of benchmarks:

● But what aspects of GNNs are actually tested by these?



Approach

● Empirically study specific transformation sensitivity to gauge how 
task-related information is encoded in graph datasets:

1. Perturb graph dataset to alter node-features or
graph connectivity in a specific way

original graph perturb node 
features

perturb graph 
connectivity



MidPass

HighPass

LowPassNoNodeFtrs

NodeDeg

RandomFtrs

Original

RandRewire

NoEdges

FullyConn FiedlerFrag

Frag-k1

Frag-k2

Frag-k3

Perturbations - feature (6) vs. structure (7)



Taxonomy Framework
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Low-pass

Mid-pass

High-pass

98%

92%

78%

Dataset …

Low-pass

Mid-pass

High-pass

98%

92%

78%

Dataset 2

Pert. 1

Pert. 2

…

98%

92%

…

Sensitivity 
profile

Dataset 1

Key idea: Gauge how task-related information is encoded in graph datasets by 
empirically studying perturbation sensitivity and generate “fingerprints”



● Dataset & graph sizes both ranging from ~101 to ~105

● 49 datasets (24 inductive, 25 transductive)

○ Node- vs. Graph-level tasks
○ Inductive vs. Transductive
○ Real-world vs. Synthetic  
○ Homophilic vs. Heterophilic

Datasets

15

● Multiple domains: Biochemistry, image data, social graphs, 
collaboration graphs, citation & web graphs



Results: Inductive Tasks

Three main clusters:

● I-1 is sensitive to node 
feature perturbations

● I-2 is robust to either 
type of perturbations

● I-3 is very sensitive to 
graph structure 
perturbations
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Results: Inductive Tasks

● CIFAR10
● PCQM4Mv2-subset

● ogbg-molpcba
● D&D

● REDDIT-MULTI-5K
● COLLAB
● NCI1
● CLUSTER
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Results: Transductive Tasks

Three main clusters:

● T-1 contains heterophilic 
datasets

● T-2 relies strongly on node 
features

● T-3 is robust to either type 
of perturbations
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Results: Transductive Tasks

● WebKB-Wisconsin
● Actor

● Flickr
● WikiCS
● WikiNet-chameleon

● Twitch-EN
● GitHub
● WikiNet-squirrel
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Inductive Logical Query Answering 
in Knowledge Graphs

35th Conference on Neural Information Processing Systems 2022

1Mila, 2McGill University, 3Unversité de Montreal, 4Stanford University, 5HEC Montreal

Mikhail Galkin1,2 Zhaocheng Zhu1,3 Hongyu Ren4 Jian Tang1,5
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Query Answering in KGs

● Multi-relational graph G, 
● Logical quey q

○ ∃-quantified variables V, 
constants C

○ Logical operators: ⋀,⋁,￢

Where did US citizens with Nobel Prize graduate from?

ConstantsVariables Projections R(a,b) query 
shape

Training Graph

Logical Operators ⋀,⋁,￢

win

citizen

graduate

answers

Nobel 
Prize

USA

Einstein

University 
of Zurich

ETH Zurich
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Inductive Query Answering
The same query executed against a new graph with new nodes and edges

New correct answers at inference time

Training graph Inference graph (new nodes and edges)

Nobel 
Prize

USA

Einstein

University 
of Zurich

ETH 
Zurich

Nobel 
Prize

USA

Einstein

Feynman Princeton

University 
of Zurich

ETH 
Zurich

win

citizen

graduate

answers
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Setup

Any model pipeline 
typically needs input features:

● Input node features are not given
● Learning shallow node embeddings is 

useless for unseen inference nodes
● How to get inductive features?

Nobel 
Prize

USA

Einstein

Feynman Princeton

University 
of Zurich

ETH Zurich
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The Essence of Inductiveness
1. Inductive representations of each entity

embed decode
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The Essence of Inductiveness
1. Inductive representations of each entity

embed decode

2. Inductive representations of the relative relational structure

embed classification

✗
✓

✗

✗

relative to
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NodePiece - “subword units” for KGs
a2

a3 a1 a2

Closest anchors
+

Anchor distances

1

Relational context

2 3

r1_inv r3_inv r7

Encoder

Target node

Vocabulary = Anchors + Relation types
Inductive out-of-the-box: unseen nodes are “tokenized” with the same Vocab

Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

a1

a3

r1_inv
r3_inv

r3
r1

r7
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27Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

All use 
NodePiece
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Inductive NodePiece-QE

Materialize 
NodePiece 

embeddings

decode

1. Projection operator: scoring 
function (ComplEx)

2. Logical operators: t-norms

3. Inference-only decoder: 
non-parametric CQD-Beam

Train NodePiece 
on 1p links

CQD-Beam

[1] Arakelyan et al. Complex Query Answering with Neural Link Predictors. ICLR 2021
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The Essence of Inductiveness
2. Inductive representations of the relative relational structure

embed classification

✗
✓

✗

✗

relative to

In simple link prediction, such inductive representations are studied by NBFNet.

How to extend NBFNet to inductive complex queries?

Zhu et al. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021



 NeurIPS 2022

GNN-QE: NBFNet + T-norms

30Zhu et al. Neural-Symbolic Models for Logical Queries on Knowledge Graphs. ICML 2022

Turing Award

Deep Learning Field-1

Win-1

University
Symbolic Query 
Decomposition

 
 

 

 

 

 
Each variable is a fuzzy set of entities, where each element in the set has a probability. 

Deep Learning: 1
Database: 0
Graphics: 0
…

UofT: 0.8
NYU: 0.75
UdeM: 0.7
… 

Turing Award: 1
Nobel Prize: 0
The Oscars: 0
…

 

 

  
G.E. Hinton: 0.9
Y. Bengio: 0.8
Y. LeCun: 0.7
M. Welling: 0.7
…

D.E. Knuth: 0.9
G.E. Hinton: 0.9
Y. LeCun: 0.8
Y. Bengio: 0.8
… G.E. Hinton: 0.81

Y. Bengio: 0.64
Y. LeCun: 0.56
…
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Inductive GNN-QE
2. Inductive representations of the relative relational structure

embed classification

✗
✓

✗

✗

relative to

● NBFNet as learnable projection

● Non-parametric t-norms as logical operators

● Learning relation (query) embeddings only, no entity embeddings



 07.11.2022

New Inductive Datasets

32
More new nodes and edges at inference time (105%)
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More new nodes and edges at inference time (300%)

New Inductive Datasets
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More new nodes and edges at inference time (550%)

New Inductive Datasets
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Inductive Generalization to Larger Test Graphs is Still a Problem

35

All GNN-based models are affected
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Finding New Answers to Train Queries in Larger Graphs

36

Inductive models can infer new correct answers but still 
struggle on larger graphs



Recipe for a
General, Powerful, Scalable (GPS)
Graph Transformer
Ladislav Rampášek

37Rampášek L., Galkin M., Dwivedi V. P., Luu A. T., Wolf G., & Beaini D. Recipe for a General, Powerful, Scalable Graph Transformer. NeurIPS 2022.



Drawbacks:

● 1-order MPNNs have limited expressivity
(Weisfeiler-Leman test perspective)

● Over-smoothing:
With increasing the number of GNN layers,
the features tend to converge to the same value

● Over-squashing:
Losing information when trying to aggregate 
messages from many neighbors into a single vector

● Poor capturing of long-range dependencies

Message Passing Neural Networks

38



Pros of Transformers on Graphs

● Decoupled computation graph structure from the input graph structure

● No problem handling long-range connections as all nodes are now connected to each other.

● Under some assumptions graph Transformers are universal function approximators on graphs
[Kreuzer et al., 2021].

39

✅
✅
✅



Cons of Transformers on Graphs

● Loss of graph structure. We need better identifiability of nodes in a graph.

● Loss of locality inductive bias. MPNNs work well on graphs with pronounced locality.

● O(N²) computational complexity in the number of nodes whereas
MPNNs are linear in the number of edges O(E).

40

⛔
⛔
⛔



General, Powerful, Scalable Graph Transformer

We provide a recipe for building Graph Transformers that are:

●   General: Our modular recipe consists of 3 main building blocks:
positional and structural encodings,
local message passing, and
global attention into a single pipeline

●   Powerful: More than 1-WL expressive when paired with appropriate
positional and structural features.

●   Scalable: The design allows linear global attention modules,
hence scaling to graphs of many thousands of nodes each.

41Rampášek L., Galkin M., Dwivedi V. P., Luu A. T., Wolf G., & Beaini D. Recipe for a General, Powerful, Scalable Graph Transformer. NeurIPS 2022.



● Positional: Where am I?
○ Laplacian PE, SignNet, PEG, …

● Structural: What does my neighborhood look like?
○ Random-walk SE, subgraph patterns, …

● Can categorized as: local, global, or relative

Positional and Structural Encodings

42



Combines Local MPNN and Transformer:
● Sum aggregation of the two 

representations
● Followed by a 2-layer MLP and 

skip-connections

GPS layer

43

stack of L GPS layers



● Provides locality bias that is difficult or expensive to 
achieve in Transformer

● Processes features of real edges:
○ Encodes edge features into the node features 
○ Updates real edge features:

● Examples:
○ GatedGCN [Bresson & Laurent, 2017]
○ GINE [Hu et al., 2019]
○ PNA [Corso et al., 2020]

GPS layer:  1. Local Message Passing

44



● Fully connected computational graph
● Can utilize PE/SE and local MPNN encoding
● O(N2) computational complexity with vanilla Transformer
● As we donʼt need to consider edge features, we can use 

existing linear Transformer architectures:
○ Performer [Choromanski et al., 2021]
○ BigBird [Zaheer et al., 2020]

GPS layer:  2. Global Attention (Transformer)

45



● Fully connected computational graph
● Can utilize PE/SE and local MPNN encoding
● O(N2) computational complexity with vanilla Transformer
● As we donʼt need to consider edge features, we can use 

existing linear Transformer architectures:
○ Performer [Choromanski et al., 2021]
○ BigBird [Zaheer et al., 2020]

GPS layer:  2. Global Attention (Transformer)
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GPS layer

47

GPS layer keeps the benefits and remedies the cons of a Transformer:

● Loss of graph structure – solved by precomputed PE/SE, local MPNN module

● Loss of locality inductive bias – solved by local MPNN module

● O(N²) computational complexity – solved by Performer global attention module 

⛔
⛔
⛔

✅
✅
✅



Selected Results

48

● Particularly noteworthy is the performance on ZINC and OGB-LSC PCQM4Mv2.

GPS doesnʼt use any molecular 3D information



GPS++ is OGB LSC 2022 Winner in PCQM4M v2

49

Private Test 
Challenge

Public Test



Long Range Graph Benchmark (LRGB) Results

50

● A new collection of datasets that require long range modeling for a network to 
perform well.

Dwivedi V.P., Rampášek L., Galkin M., Parviz A., Wolf G., Luu A.T. and Beaini D., Long Range Graph Benchmark. NeurIPS Datasets and Benchmarks 2022.



Long Range Graph Benchmark (LRGB) Results

51Dwivedi V.P., Rampášek L., Galkin M., Parviz A., Wolf G., Luu A.T. and Beaini D., Long Range Graph Benchmark. NeurIPS Datasets and Benchmarks 2022.


