

LOG Meetup at Mila

Plan for today

LOG 2022 accepted papers:

- Weisfeiler and Leman Go Relational
- Taxonomy of Benchmarks in Graph Representation Learning

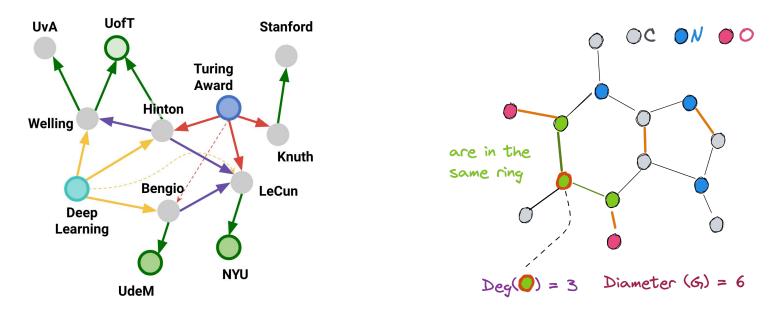
NeurIPS 2022 papers:

- Inductive Logical Query Answering in Knowledge Graphs
- A Recipe for a General, Powerful, and Scalable Graph Transformers
- Long-Range Graph Benchmark

Weisfeiler and Leman Go Relational

Pablo Barcelo, Mikhail Galkin, Christopher Morris, Miguel Romero Oorth

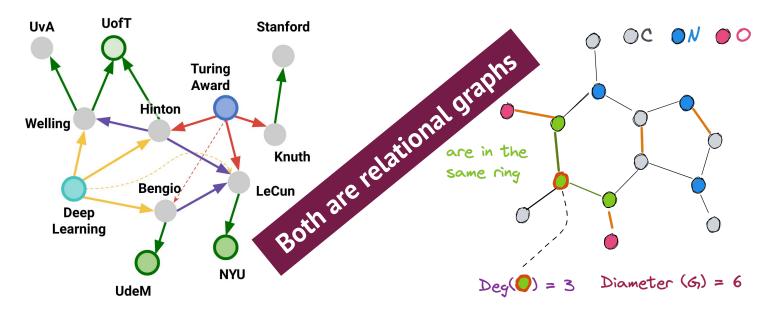
WL Go Relational



What's common between KG and molecular graph?

4 07.11.2022

WL Go Relational



What's common between KG and molecular graph?

5 07.11.2022

So how expressive are relational GNNs?

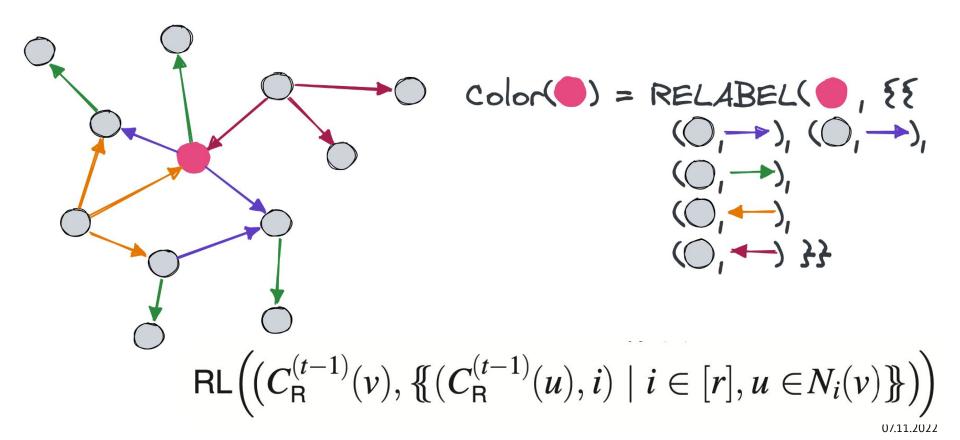
Some places our guys Weisfeiler and Leman have been to recently:

- × × × × ×
- Neural Sparse Topological Cellular Hyperbolic
- Infinite
- Relational :(time to fix that!

A. Leman

B. Weisfeiler

Relational WL Iteration



Relational WL Findings

Relational GCN (R-GCN) ≡ CompGCN and bounded by 1-RWL

Multiplicative message functions is **the best** (generally, those that capture vector scaling)

Relational WL Findings

Current GINE Conv def message(self, x_j: Tensor, edge_attr: Tensor) -> Tensor:

> if self.lin is not None: edge_attr = self.lin(edge_attr)

return (x_j + edge_attr).relu()

•••

```
# Best GINE Conv
def message(self, x_j: Tensor, edge_attr: Tensor) -> Tensor:
```

```
if self.lin is not None:
    edge_attr = self.lin(edge_attr)
```

```
return (x_j * edge_attr).relu()
```


Taxonomy of Benchmarks in Graph Representation Learning

Learning on Graphs (LoG) 2022

Renming Liu³, **Semih Cantürk**^{1,2}, Frederik Wenkel^{1,2}, Sarah McGuire³, Xinyi Wang³, Anna Little⁴, Leslie O'Bray⁵, Michael Perlmutter⁶, Bastian Rieck⁷, Matthew Hirn³, Guy Wolf^{1,2}, and Ladislav Rampášek^{1,2}

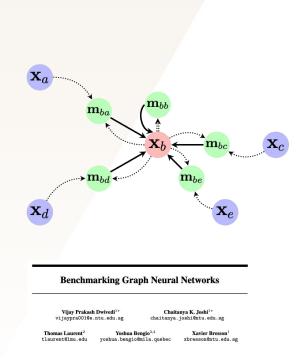
¹Mila - Quebec Al Institute, ²Université de Montréal, ³Michigan State University, ⁴University of Utah, ⁵ETH Zürich, ⁶University of California, Los Angeles, ⁷Helmholtz Zentrum München

HMGU

Illustration credit: Bronstein, M.M., Bruna, J., Cohen, T. and Veličković, P., 2021. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478.

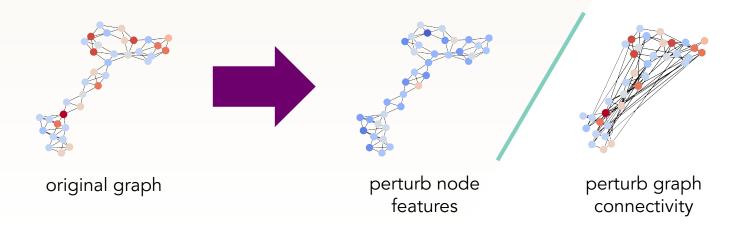
Motivation

- Graph Neural Network (GNN) development is a hot topic!
 - GCN, GAT, GraphSAGE, GIN...
 - Recently: Graph Transformers, k-GNNs...
- With emerging collections of benchmarks:

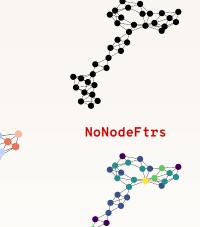


• But what aspects of GNNs are actually tested by these?

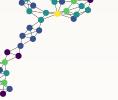
- Empirically study specific transformation sensitivity to gauge *how* task-related information is encoded in graph datasets:
 - 1. Perturb graph dataset to alter node-features or graph connectivity in a specific way



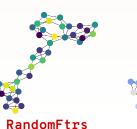
Perturbations - feature (6) vs. structure (7)



Original



NodeDeg



MidPass

LowPass

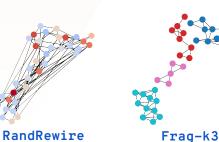
HighPass

Frag-k1

Frag-k2

NoEdges

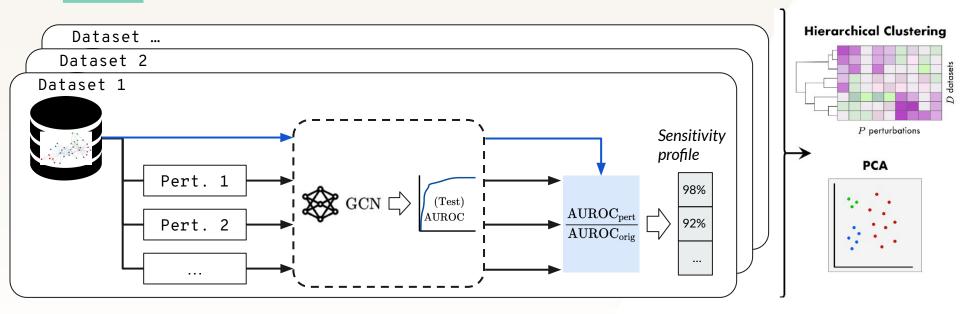
FullyConn



FiedlerFrag

Taxonomy Framework

14



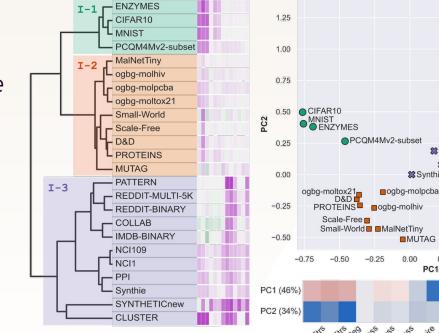
Key idea: Gauge *how* task-related information is encoded in graph datasets by empirically studying perturbation sensitivity and generate "fingerprints"

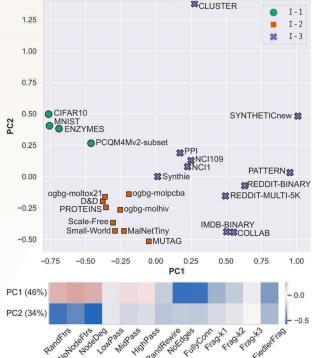
- 49 datasets (24 inductive, 25 transductive)
 - Node- vs. Graph-level tasks
 - Inductive vs. Transductive
 - Real-world vs. Synthetic
 - Homophilic vs. Heterophilic
- Multiple domains: Biochemistry, image data, social graphs, collaboration graphs, citation & web graphs
- Dataset & graph sizes both ranging from $\sim 10^1$ to $\sim 10^5$

Results: Inductive Tasks

Three main clusters:

- I-1 is sensitive to node feature perturbations
- I-2 is robust to either type of perturbations
- I-3 is very sensitive to graph structure perturbations

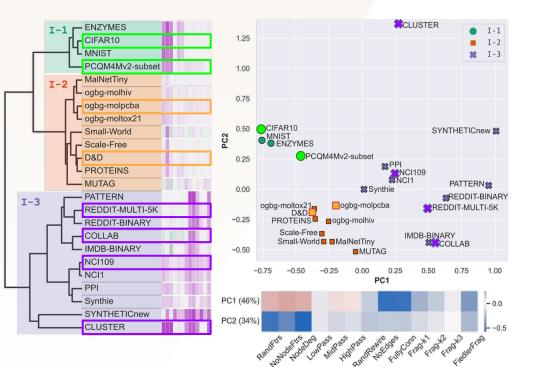




Results: Inductive Tasks

SET REPRESENTATIVE

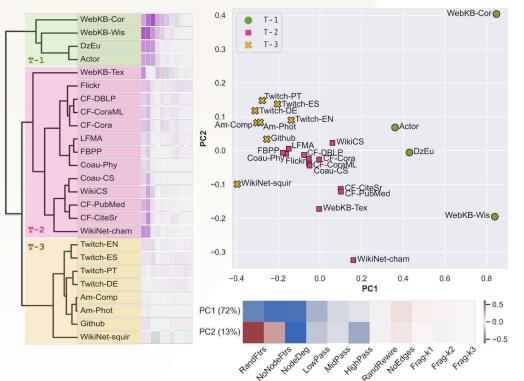
- CIFAR10
- PCQM4Mv2-subset
- ogbg-molpcba
- D&D
- REDDIT-MULTI-5K
- COLLAB
- NCI1
- CLUSTER



Results: Transductive Tasks

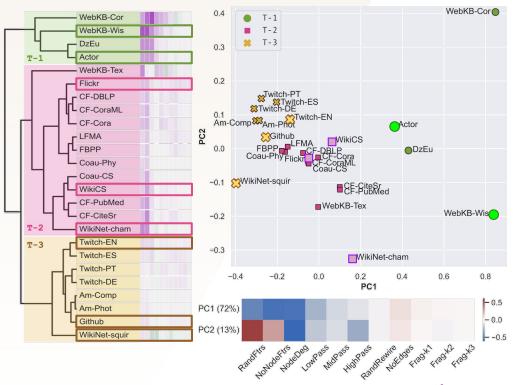
Three main clusters:

- **T-1** contains *heterophilic* datasets
- T-2 relies strongly on node features
- **T-3** is robust to either type of perturbations



Results: Transductive Tasks

- Actor
- Flickr
- WikiCS
- WikiNet-chameleon
- Twitch-EN
- GitHub
- WikiNet-squirrel



35th Conference on Neural Information Processing Systems 2022

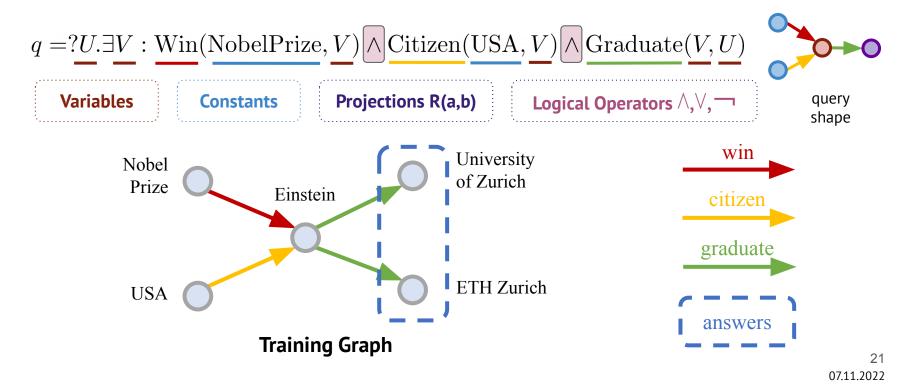
Inductive Logical Query Answering in Knowledge Graphs

Hongyu Ren⁴

¹Mila, ²McGill University, ³Unversité de Montreal, ⁴Stanford University, ⁵HEC Montreal

Query Answering in KGs

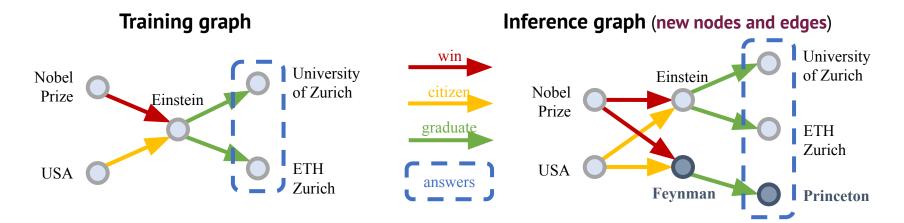
Where did US citizens with Nobel Prize graduate from?



Inductive Query Answering

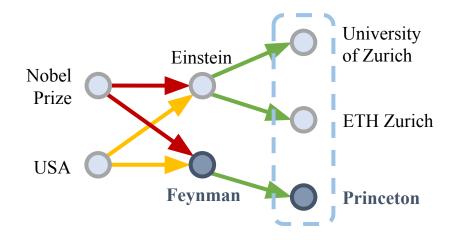
The same query executed against a new graph with new nodes and edges

 $q = ?U.\exists V : Win(NobelPrize, V) \land Citizen(USA, V) \land Graduate(V, U)$



New correct answers at inference time

Setup

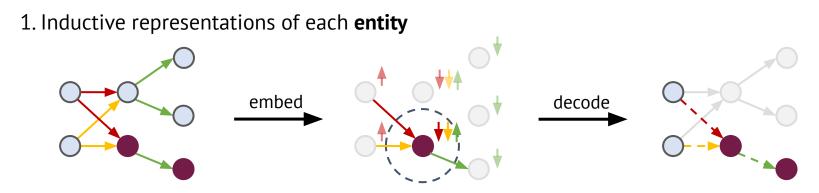


- Input node features are not given
- Learning shallow node embeddings is useless for unseen inference nodes
- How to get inductive features?

Any model pipeline typically needs input features: $X' = \operatorname{GNN}(X, A, W)$

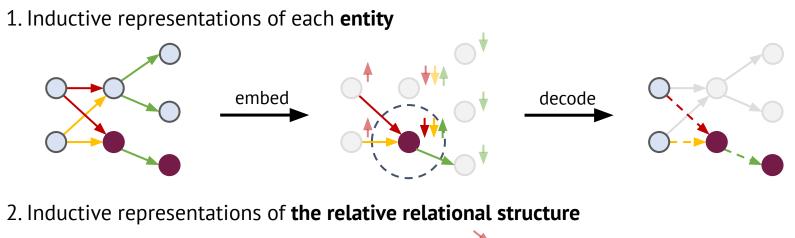


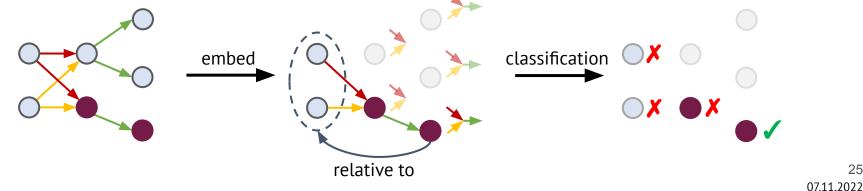
The Essence of Inductiveness



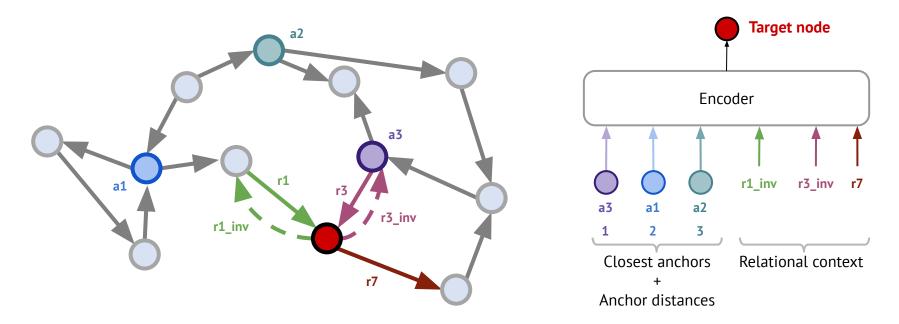
25

The Essence of Inductiveness





NodePiece - "subword units" for KGs



Vocabulary = Anchors + Relation types Inductive out-of-the-box: unseen nodes are "tokenized" with the same Vocab

Galkin et al. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022

Leaderboard for ogbl-wikikg2

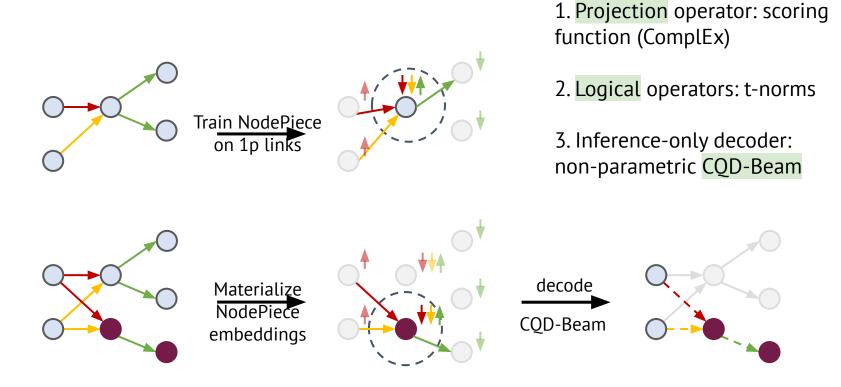
The MRR score on the test and validation sets. The higher, the better.

Package: >=1.2.4

Deprecated ogbl-wikikg leaderboard can be found here.

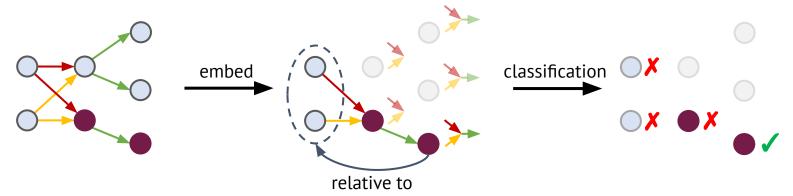
	Rank	Method	Ext. data	Test MRR	Validation MRR	Contact	References	#Params	Hardware	Date
	1	StarGraph + TripleRE	No	0.7201 ± 0.0011	0.7288 ± 0.0008	Hongzhu Li (360Al)	Paper, Code	86,762,146	Tesla A100(40GB)	May 30, 2022
	2	TranS	No	0.6939 ± 0.0011	0.7058 ± 0.0018	Xuanyu Zhang (DXM AI)	Paper, Code	38,430,804	Tesla V100 (16GB)	Apr 19, 2022
All use NodePie		TranS	No	0.6882 ± 0.0019	0.6988 ± 0.0006	Xuanyu Zhang (DXM AI)	Paper, Code	19,215,402	Tesla V100 (16GB)	Apr 28, 2022
	4	TripleRE + NodePiece	No	0.6866 ± 0.0014	0.6955 ± 0.0008	Long Yu (360AI)	Paper, Code	36,421,802	Tesla A100(40GB)	Feb 24, 2022
	5	InterHT	No	0.6779 ± 0.0018	0.6893 ± 0.0015	Baoxin Wang (HFL)	Paper, Code	19,215,402	Tesla V100 (32GB)	Feb 10, 2022
	6	TripleRE + NodePiece	No	0.6582 ± 0.0020	0.6616 ± 0.0018	Long Yu (360AI)	Paper, Code	7,289,002	Tesla A100(40GB)	Dec 25, 2021

Inductive NodePiece-QE



The Essence of Inductiveness

2. Inductive representations of the relative relational structure

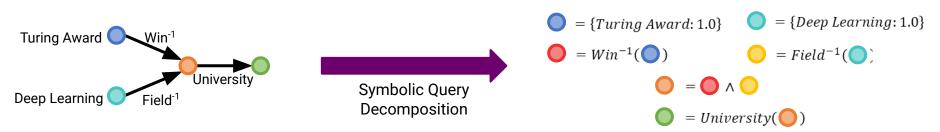


In simple link prediction, such inductive representations are studied by NBFNet.

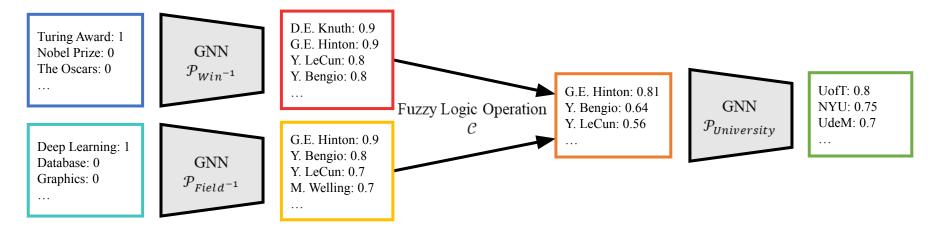
How to extend NBFNet to inductive complex queries?

Zhu et al. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021

GNN-QE: NBFNet + T-norms

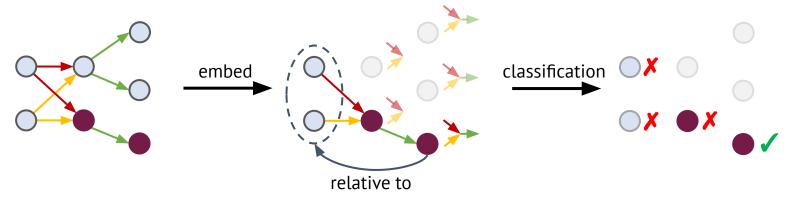


Each variable is a fuzzy set of entities, where each element in the set has a probability.



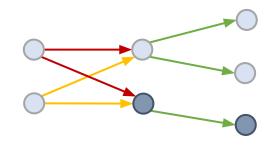
Inductive GNN-QE

2. Inductive representations of the relative relational structure



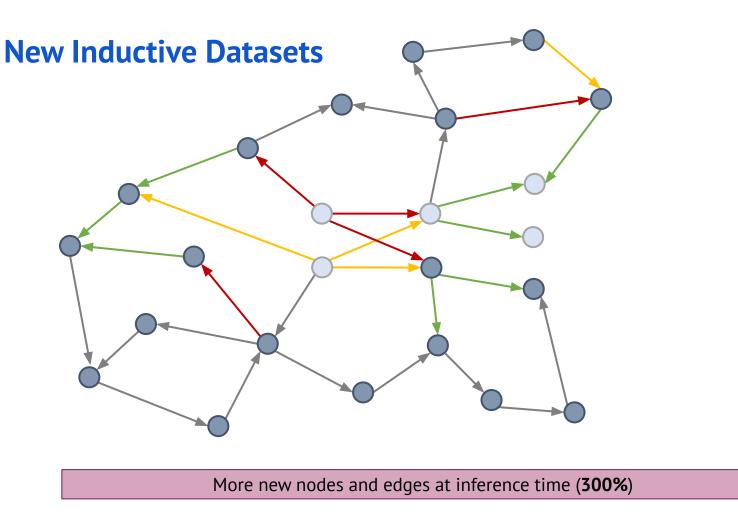
- NBFNet as learnable projection
- Non-parametric t-norms as logical operators
- Learning relation (query) embeddings only, no entity embeddings

New Inductive Datasets

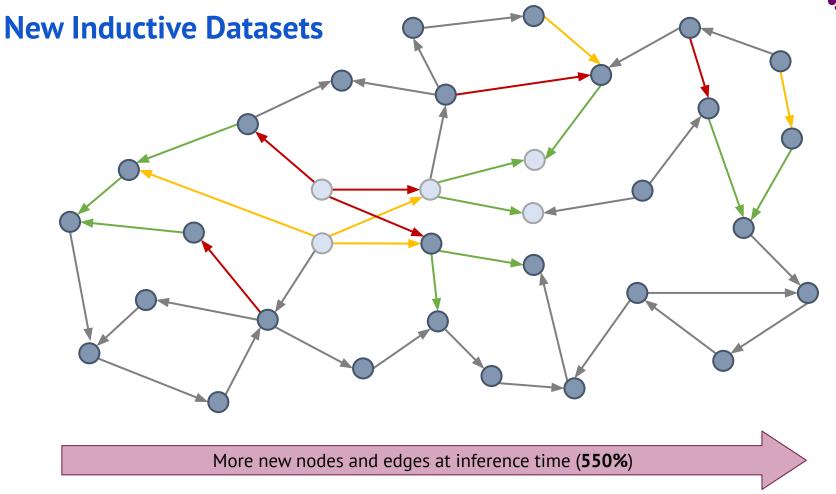


More new nodes and edges at inference time (105%)

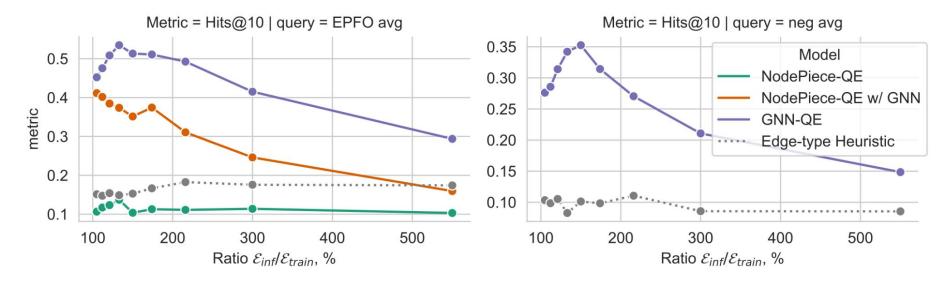
32 07.11.2022



33 07.11.2022

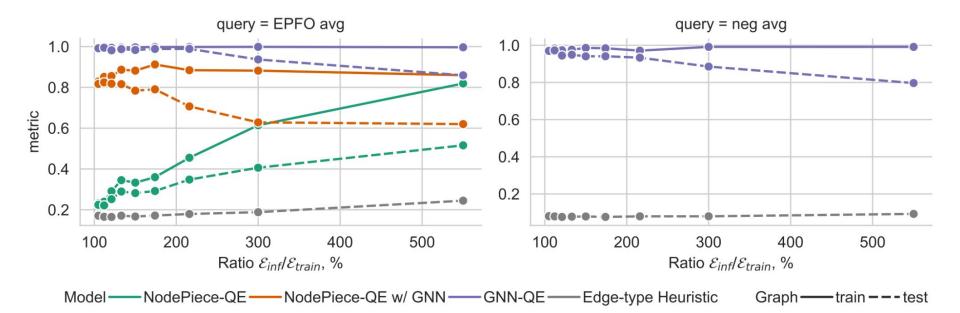


Inductive Generalization to Larger Test Graphs is Still a Problem

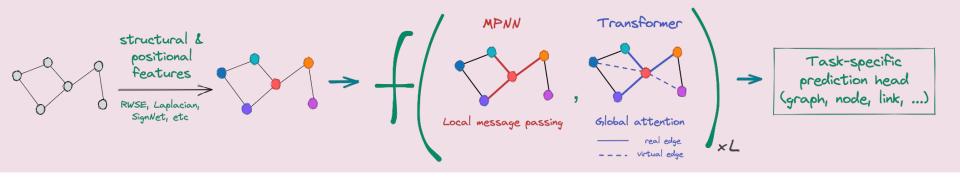


All GNN-based models are affected

Finding New Answers to Train Queries in Larger Graphs



Inductive models can infer new correct answers but still struggle on larger graphs



Recipe for a General, Powerful, Scalable (GPS) Graph Transformer

Ladislav Rampášek

Rampášek L., Galkin M., Dwivedi V. P., Luu A. T., Wolf G., & Beaini D. Recipe for a General, Powerful, Scalable Graph Transformer. NeurIPS 2022.

Universi

de Montréal

Message Passing Neural Networks

Drawbacks:

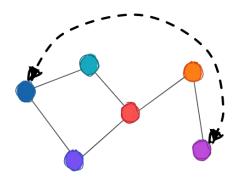
- 1-order MPNNs have **limited expressivity** (Weisfeiler-Leman test perspective)
- Over-smoothing:

With increasing the number of GNN layers, the features tend to converge to the same value

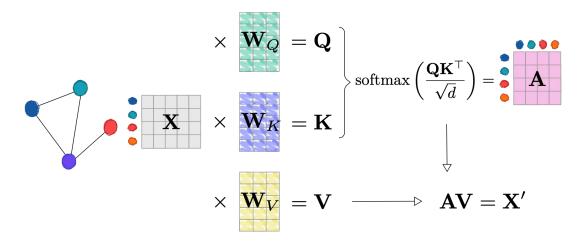
• Over-squashing:

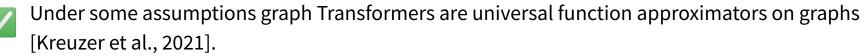
Losing information when trying to aggregate messages from many neighbors into a single vector

• Poor capturing of long-range dependencies

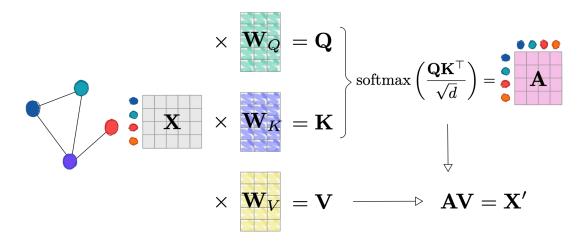


Pros of Transformers on Graphs





Cons of Transformers on Graphs



- **Loss of graph structure**. We need better identifiability of nodes in a graph.
- **Loss of locality inductive bias**. MPNNs work well on graphs with pronounced locality.
- O(N²) computational complexity in the number of nodes whereas MPNNs are linear in the number of edges O(E).

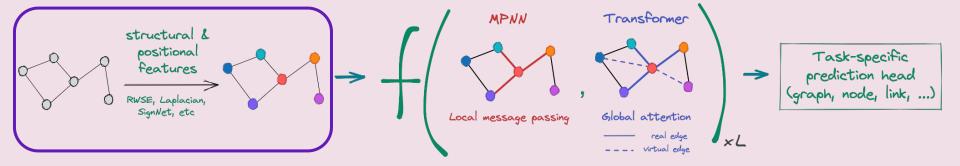
General, Powerful, Scalable Graph Transformer

We provide a recipe for building Graph Transformers that are:

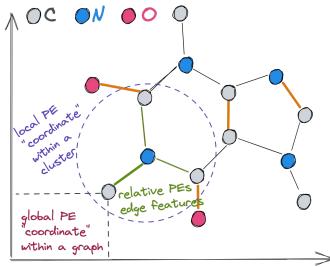
General: Our modular recipe consists of 3 main building blocks: positional and structural encodings, local message passing, and global attention into a single pipeline

Powerful: More than 1-WL expressive when paired with appropriate positional and structural features.

Scalable: The design allows linear global attention modules, hence scaling to graphs of many thousands of nodes each.

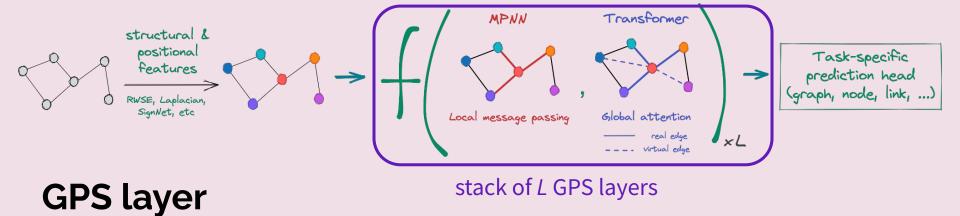


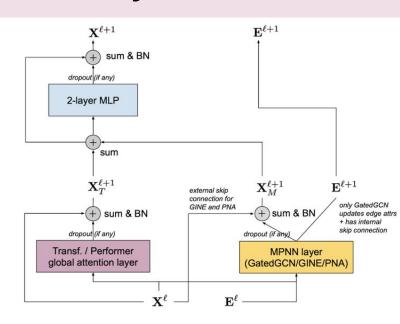
Positional and Structural Encodings



• Positional: Where am I?

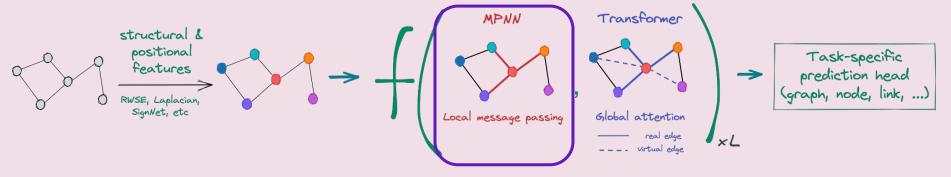
- Laplacian PE, SignNet, PEG, ...
- **Structural**: What does my neighborhood look like?
 - Random-walk SE, subgraph patterns, ...
- Can categorized as: *local*, *global*, or *relative*





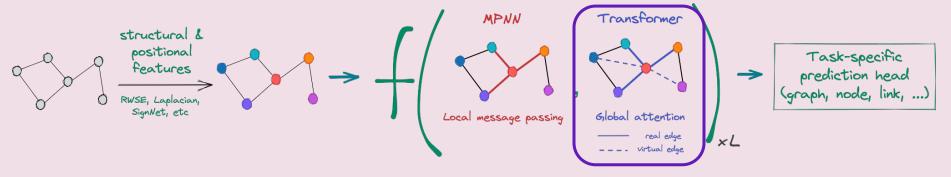
Combines Local MPNN and Transformer:

- Sum aggregation of the two representations
- Followed by a 2-layer MLP and skip-connections



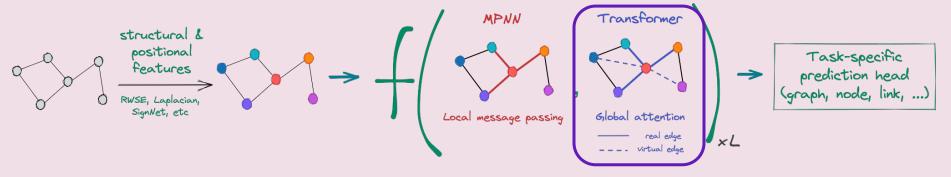
GPS layer: 1. Local Message Passing

- **Provides locality bias** that is difficult or expensive to achieve in Transformer
- Processes features of real edges:
 - Encodes edge features into the node features
 - Updates real edge features:
- Examples:
 - GatedGCN [Bresson & Laurent, 2017]
 - **GINE** [Hu et al., 2019]
 - **PNA** [Corso et al., 2020]



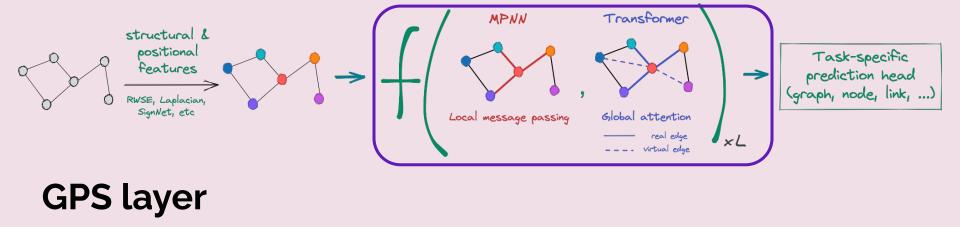
GPS layer: 2. Global Attention (Transformer)

- Fully connected computational graph
- Can utilize PE/SE and local MPNN encoding
- O(N²) computational complexity with vanilla Transformer
- As we don't need to consider edge features, we can use existing linear Transformer architectures:
 - **Performer** [Choromanski et al., 2021]
 - **BigBird** [Zaheer et al., 2020]

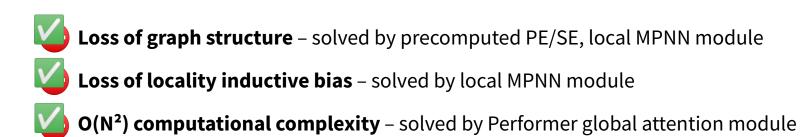


GPS layer: 2. Global Attention (Transformer)

- Fully connected computational graph
- Can utilize PE/SE and local MPNN encoding
- O(N²) computational complexity with vanilla Transformer
- As we don't need to consider edge features, we can use existing linear Transformer architectures:
 - Performer [Choromanski et al., 2021]
 - **BigBird** [Zaheer et al., 2020]



GPS layer keeps the benefits and remedies the cons of a Transformer:



Selected Results

• Particularly noteworthy is the performance on ZINC and OGB-LSC PCQM4Mv2.

Model	ZINC				
	$\mathbf{MAE}\downarrow$				
GCN [33] GIN [60] GatedGCN [7, 15] PNA [13] DGN [3] CIN [5] CRaWl [53] GIN-AK+ [67]	$\begin{array}{c} 0.367 \pm 0.011 \\ 0.526 \pm 0.051 \\ 0.282 \pm 0.015 \\ 0.188 \pm 0.004 \\ 0.168 \pm 0.003 \\ \textbf{0.079 \pm 0.006} \\ 0.085 \pm 0.004 \\ \textbf{0.080 \pm 0.001} \end{array}$				
SAN [36] Graphormer [62] K-Subgraph SAT [9] EGT [29] GPS (ours)	$\begin{array}{c} 0.139 \pm 0.006 \\ 0.122 \pm 0.006 \\ 0.094 \pm 0.008 \\ 0.108 \pm 0.009 \end{array}$				

Model	PCQM4Mv2			
	Validation MAE \downarrow	Training MAE	# Param.	
GCN-virtual	0.1153	n/a	4.9M	
GIN-virtual	0.1083	n/a	6.7M	
GRPE [48]	0.0890	n/a	46.2M	
EGT [29]	0.0869	n/a	89.3M	
Graphormer [51]	0.0864	0.0348	48.3M	
GPS-small	0.0938	0.0653	6.2M	
GPS-medium	0.0858	0.0726	19.4M	

GPS doesn't use any molecular 3D information

GPS++ is OGB LSC 2022 Winner in PCQM4M v2

Leaderboard for PCQM4Mv2

Mean Absolute Error (MAE). The lower, the better.

Private Test Challenge

Rank	Team	Test-challenge MAE
1	WeLoveGraphs	0.0719
2	ViSNet	0.0723
2	NVIDIA-PCQM4Mv2	0.0723

Leaderboard for PCQM4Mv2

MAE on the test-dev and validation sets. The lower, the better.

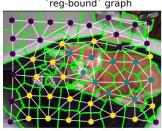
Package: >=1.3.2

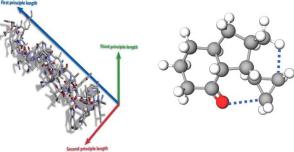
Rank	Method	Ensemble	Test- dev MAE	Validation MAE	Team	Contact	References	#Params	Hardware	Date
1	GPS++	Yes	0.0720	0.0778	GraphcoreValenceMILA	Dominic Masters (Graphcore/Valence/MILA)	Paper, Code	44,291,413	Graphcore BOW- POD16	Nov 18, 2022
2	MolNet_Ensemble	Yes	0.0753	0.0797	polixir.ai	zouxiaochuan (polixir.ai)	Paper, Code	32,047,874	8 RTX3090	Nov 1, 2022
3	Global-ViSNet	No	0.0766	0.0784	ViSNet	Tong Wang (Microsoft Research Al4Science)	Paper, Code	78,450,692	4 NVIDIA A100 GPUs	Oct 26, 2022

Public Test

Long Range Graph Benchmark (LRGB) Results

 A new collection of datasets that require long range modeling for a network to perform well.





Model	PascalVOC-SP	COCO-SP	Peptides-func	Peptides-struct	PCQM-Contact
	F1 score ↑	F1 score ↑	AP ↑	$\mathbf{MAE}\downarrow$	MRR ↑
GCN GINE GatedGCN GatedGCN+RWSE	$\begin{array}{c} 0.1268 \pm 0.0060 \\ 0.1265 \pm 0.0076 \\ 0.2873 \pm 0.0219 \\ 0.2860 \pm 0.0085 \end{array}$	$\begin{array}{c} 0.0841 \pm 0.0010 \\ 0.1339 \pm 0.0044 \\ \textbf{0.2641} \pm \textbf{0.0045} \\ 0.2574 \pm 0.0034 \end{array}$	$\begin{array}{c} 0.5930 \pm 0.0023 \\ 0.5498 \pm 0.0079 \\ 0.5864 \pm 0.0077 \\ 0.6069 \pm 0.0035 \end{array}$	$\begin{array}{c} 0.3496 \pm 0.0013 \\ 0.3547 \pm 0.0045 \\ 0.3420 \pm 0.0013 \\ 0.3357 \pm 0.0006 \end{array}$	$\begin{array}{c} 0.3234 \pm 0.0006 \\ 0.3180 \pm 0.0027 \\ 0.3218 \pm 0.0011 \\ 0.3242 \pm 0.0008 \end{array}$
Transformer+LapPE SAN+LapPE SAN+RWSE	0.2694 ± 0.0098 0.3230 ± 0.0039 0.3216 ± 0.0027	0.2618 ± 0.0031 0.2592 ± 0.0158* 0.2434 ± 0.0156*	$\begin{array}{c} 0.6326 \pm 0.0126 \\ \textbf{0.6384} \pm \textbf{0.0121} \\ \textbf{0.6439} \pm \textbf{0.0075} \end{array}$	0.2529 ± 0.0016 0.2683 ± 0.0043 0.2545 ± 0.0012	$\begin{array}{c} 0.3174 \pm 0.0020 \\ \textbf{0.3350} \pm \textbf{0.0003} \\ \textbf{0.3341} \pm \textbf{0.0006} \end{array}$
GPS (ours)	0.3748 ± 0.0109	0.3412 ± 0.0044	0.6535 ± 0.0041	0.2500 ± 0.0005	0.3337 ± 0.0006

Dwivedi V.P., Rampášek L., Galkin M., Parviz A., Wolf G., Luu A.T. and Beaini D., Long Range Graph Benchmark. NeurIPS Datasets and Benchmarks 2022.

Long Range Graph Benchmark (LRGB) Results

