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Foundation Models

A single model pre-trained (often) in the self-supervised fashion on large amounts of 
data that is applicable to many downstream tasks 

- By in-context learning

- By fine-tuning
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We Want Graph Foundation Models!

● … Large!
○ Non strong signal that GNNs or Graph Transformers benefit from 

depth / increasing # params
○ Scaling laws for GNNs / GTs are non-existent

● … Self-supervised pre-training!
○ No unified task
○ Limited signal that pre-training helps

● … Uniform featurizing and Multi-modal!
○ But different 2D / 3D graphs, periodic structures, geometry

3
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Foundation Models at Intel AI

● At large-scale

● Inference on any domain

● All graph-level tasks 
(start from link prediction) 4

Knowledge Graph 
Reasoning AI 4 Science

● Molecules, proteins, 
materials (crystals)

● Materials generation, eg, 
new catalysts 
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Foundation models:
Graph Reasoning

5

- Simple link prediction

- Complex logical query answering

- … and beyond
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Knowledge Graphs
London (Google) London (Bing)

Multi-relational graphs with  
(subject, predicate, object) 
triples. 

Multi-domain graphs:
● Encyclopedias (Wikidata, 

Freebase)

In search and 
retrieval-augmented 
LLMs
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Knowledge Graphs
UniProt 

Multi-relational graphs with  
(subject, predicate, object) 
triples. 

Multi-domain graphs:
● Encyclopedias (Wikidata, 

Freebase)
● Sciences (UniProt, 

DrugBank, Hetionet)

eg, protein LMs are 
trained on UniProt
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Knowledge Graphs
Spatiotemporal Urban KG  

Multi-relational graphs with  
(subject, predicate, object) 
triples. 

Multi-domain graphs:
● Encyclopedias (Wikidata, 

Freebase)
● Sciences (UniProt, 

DrugBank, Hetionet)
● Thousands of 

domain-specific KGs
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Knowledge Graphs: Setup

r1 r3

r7

● Directed graphs (V, E)

● Explicit relation types (R)

● Input node features are not 
given

● Transductive: the same graph 
at inference

● Inductive: different graph at 
inference 
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Basic Knowledge Graph Reasoning

r1 r3

r7

● Query: (head, relation, ?)

● Rank all entities as possible 
tails

, r1, ?

, r1, 

?

?

?

?
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KG Completion      vs     Link Prediction

r1 r3

r7

● Query: (head, relation, ?)

● Rank all entities as possible 
tails

, r1, ?

● Query: (head, tail)

● Binary classification / 
Relation prediction

 ?
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Inductive Graph Reasoning

● New nodes and relation types 
at inference time

● We still want to reason over 
new entities and relations

, r1, ?

, r1, 

?

?

?

?

r1 r3

r7

new node

new relation
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The Holy Grail
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➔ One (pre)trained model
➔ 0-shot inference on any possible 

multi-relational graph
➔ Any simple or complex query reasoning

◆ 1-hop KG completion
◆ Multi-hop logical query answering
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KG completion 
(simple queries)

14
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Brief History: 2011 - 

15

RESCAL 
[Nickel et al, ICML 2011]

TransE 
[Bordes et al, NeurIPS 2013] 100+ KG embedding models since then 😱

Transductive models only: they learn 
graph-specific

- Entity embeddings (|V| x d)
- Relation embeddings (|R| x d)
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Brief History: 2011 - 

16

RESCAL 
[Nickel et al, ICML 2011]

TransE 
[Bordes et al, NeurIPS 2013] 100+ KG embedding models since then 😱

Transductive Triples Supervised

No 
substantial 

progress since 
2018
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Brief History: 2011 - 
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RESCAL 
[Nickel et al, ICML 2011]

TransE 
[Bordes et al, NeurIPS 2013]

Transductive Triples Supervised

Geometric DL 🎇 
2018

https://geometricdeeplearning.com/ 

https://geometricdeeplearning.com/
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Breakthrough: Neural Bellman-Ford (2021)

18

Idea: 
1. Relations do not change at inference -> we can learn relation (edge type) embeddings
2. Initialize head node feature with the learnable relation vector (query)
3. Propagate for L layers, take final representations as final node features

Task - p(tail | head, relation)

Zhu et al. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021



 May 15th 2024

Breakthrough: Neural Bellman-Ford (2021)

19

Task - p(tail | head, relation)

Zhu et al. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021
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Other Labeling Tricks

20Chamberlain, Shirobokov et al. Graph Neural Networks for Link Prediction with Subgraph Sketching. ICLR 2023
Teru et al. Inductive Relation Prediction by Subgraph Reasoning. ICML 2020
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Brief History: 2011 - 

21

RESCAL 
[Nickel et al, ICML 2011]

TransE 
[Bordes et al, NeurIPS 2013]

Inductive (ent) Triples Supervised

NBFNet 🎇 
[Zhu et al, 2021]

Geometric DL 
2018

● NBFNet and Labeling Trick GNNs generalize to new nodes given fixed relation types: 
● Is is possible to generalize to both new nodes and new relation types?
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Foundation Models for Graph Reasoning

22

➔ We want to train a single model on one (or many) graph and 
run inference on any other possible KG

➔ Main problem: different entity and relation vocabularies 
➔ For that, what is the transferable invariance?

Pre-Training

KG

Inference
0-shot or

fine-tuning

Transfer KG 2

KG
KG 3KG 5 KG 4

KG 1
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Existing Inductive (entity) Models

23

Most of existing models after NBFNet: 
● learn relation embeddings
● build relative entity representations 

(using a labeling trick)
○ Initialize the head node with a 

learnable query vector q
○ Other nodes <- 0
○ Message passing GNN

● Transfer to graphs with the same 
relation types
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ULTRA: Unified, Learnable, Transferable

24

● Let’s try building a graph of relations
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ULTRA: Unified, Learnable, Transferable

25

● Let’s try building a graph of 
relations

● 4 fundamental interactions:
○ Head-to-head (h2h)
○ Tail-to-head (t2h)
○ Tail-to-tail (t2t)
○ Head-to-tail (h2t)

Observation: 
fundamental 

relations between relations 
remain the same!
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ULTRA: Unified, Learnable, Transferable
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● Let’s try building a graph of 
relations

● 4 fundamental interactions:
○ Head-to-head (h2h)
○ Tail-to-head (t2h)
○ Tail-to-tail (t2t)
○ Head-to-tail (h2t)

● Can be used to infer relative 
relation representations of 
new relations
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Step 0: Input graph and query

27

➔ Literally any multi-relational graph
➔ No input node/edge features are needed
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Steps 1+2 : graph of relations + labeling trick

28

➔ Nodes = unique relations, edge types = 4 fundamental interactions 
➔ Initialize the query relation node with 1d

➔ Initialize the rest nodes with 0d

➔ Message passing yields relative relation representations
➔ Each relation = Unique relation representations |R| x d
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genre [[0.5, 1.2, 1.3] [[0.7, 2.2, 0.2] [[1.3, 0.5, 2.7]

authored [0.8, 0.4, 1.0] [1.2, 0.9, 3.0] [0.3, 0.8, 1.0]

collab [1.1, 2.0, 0.4]] [0.1, 1.4, 2.6]] [0.6, 2.4, 3.1]]

Each query relation = Unique representations

29

authored

genre

collab authored

genre

collab authored

genre

collab

Huang et al. A theory of link prediction via relational Weisfeiler-Leman on knowledge graphs. NeurIPS 2023

Conditional MPNN Conditional MPNN Conditional MPNN
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Step 3: run any inductive GNN

30

➔ Each relation = Unique relation representations |R| x d
➔ Use those relational representations for any inductive GNN (like NBFNet)
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ULTRA: Foundation Model for KG Reasoning

31

✓ Doesn’t need any input entity/relation features
✓ Learnable parameters: 4 fundamental relations (h2t, t2t, t2h, h2h) + GNN weights
✓ Generalizes to any graph of any size with any relation vocabulary
✓ Allows 0-shot inference and fine-tuning on any graph
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Pre-trained ULTRA beats supervised SOTA in 0-shot inference on 50+ KGs

32
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Generalization to different graph sizes

33

1k nodes
2k edges

120k nodes
1.1M edges
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Generalization to New Unseen Domains

34

➢ Pre-trained on mostly general encyclopedia data (Freebase, Wikidata)

Graph Domain
Supervised SOTA 

(MRR)
ULTRA (0-shot / ft) 

(MRR)

Hetionet Biology, drugs 0.257 0.257 / 0.399

ConceptNet Commonsense reasoning 0.320 0.082 / 0.310

Urban KG Geography, location 0.552 0.556 / 0.618

➢ Let us know more domain-specific KGs!
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More data helps 
0-shot inference

35

👀 Aggregated results over 40 KGs

👀 More diverse KGs in the pre-training data 
mix help
○ More relational graphs and their 

interactions

🤔 Saturation after training on 3-4 graphs

🤔 Scaling behavior to be investigated
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Complex logical queries 

36
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UvA UofT Stanford

UdeM
NYU

Welling

Deep 
Learning

Turing 
Award

Hinton

Knuth

LeCunBengio

?u⋀

win

field

university

At what universities do the Turing Award winners in the field of Deep Learning work?

SELECT ?uni WHERE
{
  TuringAward win   ?person .
  DeepLearning field   ?person .
  ?person university    ?uni    .
}

win

field

university

collab

given edge

predicted 
edge

SPARQL query (edge traversal)

Neural query execution (+ link prediction)

UofT UdeM NYUAnswer set

UofT

UofT UdeM NYU

Easy Hard 

Ren et al. Neural Graph Reasoning: Complex Logical Query Answering meets Graph Databases. arxiv 2023
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Query patterns

● Multi-relational graph G, 
● Logical quey q

○ ∃-quantified variables V, 
constants C

○ Logical operators: ⋀,⋁,￢

Train + 
Inference

Train + 
Inference

Inference 
only
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The same pre-trained ULTRA for complex, multi-hop queries

● Multi-relational graph G, 
● Logical quey q

○ ∃-quantified variables V, 
constants C

○ Logical operators: ⋀,⋁,￢
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Foundation Models:
AI 4 Science

40

Bandgap-guided carbon structure generation
Source: https://distributionalgraphormer.github.io/ 

https://distributionalgraphormer.github.io/
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Combines Local MPNN and Transformer:
● Sum aggregation of the two 

representations
● Followed by a 2-layer MLP and 

skip-connections

GraphGPS [Rampasek et al, 2022]
Entrance to the molecular ML

41

stack of L GPS layers
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Shameless plug: Best Graph Transformer of 2022

GPS doesnʼt use any molecular 3D information
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Long Range Graph Benchmark (LRGB) Results

43

● A new collection of datasets that require long range modeling for a network to 
perform well.

Dwivedi V.P., Rampášek L., Galkin M., Parviz A., Wolf G., Luu A.T. and Beaini D., Long Range Graph Benchmark. NeurIPS Datasets and Benchmarks 2022.
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GraphGPS++: ensembling 112 models
● GraphGPS hybrid architecture with Laplacian PEs and Random Walk SEs
● Transformer-M biased global attention with 2D/3D grouped input masking
● Denoising autoencoding auxiliary task (Noisy Nodes)
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GPS++ is OGB LSC 2022 Winner in PCQM4M v2

45

Private Test 
Challenge

Public Test
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How much molecular and 
scientific 
data is there?

Enormous LLM datasets vs 
scientific data

Beaini et al, Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets, 2023.

The Pile, Reddit, 
GitHub, Books

PCQM 4M
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How much data is there?

Fresh release: 100M molecules, 3000 tasks, 13B labels

Beaini et al, Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets, 2023.

The Pile, Reddit, 
GitHub, Books

PCQM 4M
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MolGPS: scales to 1B params!

48
Sypetkowski, Wenkel, et al.  On the Scalability of GNNs for Molecular Graphs, arxiv 2024
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What is the best pre-training objective?
Noisy Nodes [Godwin et al., 2022]
Input: 2D / 3D molecules
Output: Energy

● Aims to tackle the oversmoothing and 
overfitting problem in MPNNs

● Auxiliary denoising autoencoding

● Can be applied just to node and edge 
features, which is what we do

● 3D-based distance denoising didn’t 
improve GPS++ performance :(

Godwin et al, Simple gnn regularisation for 3d molecular property prediction & beyond, ICLR 2022.
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What is the best pre-training objective?
ChemGPT [Frey et al., 2022]

Input: SELFIES
Output: Next token

● Slap a transformer 
over string 
representations

● Some scaling laws 
can be derived

N Frey, R Soklaski, S Axelrod, S Samsi, R Gomez-Bombarelli, C Coley, V Gadepally, Neural Scaling of Deep Chemical Models, 2022.
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What is the best pre-training objective?
Distributional Graphormer [Frey et al., 2022]

Input: 3D structures (molecules, proteins, crystals)
Output: Equilibrium energy distribution + nice generative model

Zheng et al, Distributional Graphormer: Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning, 2023.
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Proteins: ESM-2 as a Foundation Model
ESM-2, ESMFold [Lin et al., 2022]

MLM on protein sequences
Bonus: 3D structure (folding) emerges from LM representations!

Lin, Akin, Rao, Hie et al, Language models of protein sequences at the scale of evolution enable accurate structure prediction, 2022.

ESM Fold https://github.com/facebookresearch/esm 

https://github.com/facebookresearch/esm
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Proteins: ESM-2 as a Foundation Model
ESM-2, ESMFold [Lin et al., 2022]

MLM on protein sequences
Bonus: 3D structure (folding) emerges from LM representations!

ESM-2 embeddings are used in a variety of protein models:

- DiffDock [Corso et al, ICLR 2023] - a diffusion model for protein-ligand 
docking

- ProtST [Xu, Yuan, et al, ICML 2023 Oral] - text-to-protein retrieval

Corso et al, DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking, ICLR 2023
Xu, Yuan, et al, ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts, ICML 2023.
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JMP-1, DPA-2: Geometric GNNs for Molecules and Crystals

54Shoghi et al. From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction, ICLR 2024
Zhang et al. DPA-2: Towards a universal large atomic model for molecular and material simulation. Arxiv 2023
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MatterGen: a conditional generative model for materials

55
Zeni et al. MatterGen: a generative model for inorganic materials design, arxiv 2023
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Molecular Dynamics Simulations (MD)

Fu et al. Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-scale Graph Networks. TMLR 2023

● aka ML potentials, ML force fields

● Predict how a structure changes over time 
○ eg, atoms 3D coordinates
○ you’d need to obtain energy, forces, acceleration, and 

integrate over the desired time period

● Can be applied to molecules, proteins, crystals, 
and materials in general

● Classic models: slow
ML models: fast but no silver bullet
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MACE MP-0 and MatterSim: foundational MD models

57Batatia et al. A foundation model for atomistic materials chemistry, arxiv 2024
Yang et al. MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures. arxiv 2024
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Back to Materials and Crystals

Miret, Lee, Gonzales, Nassar, Spellings. The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science. TMLR, 2023.
Lee, Gonzales, Nassar, Spellings, Galkin, Miret. MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling. 2023

https://github.com/IntelLabs/matsciml 

● 6 datasets (1.5M materials)
● 3 baseline models
● Many training tasks incl. generative pipeline 

Announcement Blog Post (Oct 9th)

https://github.com/IntelLabs/matsciml
https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/Intel-Labs-Releases-Open-MatSci-ML-Toolkit-1-0-for-Training-AI/post/1530914
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A single model for node classification?
● Different feature dimensions and # of labels

One GNN 
with a 

fixed-dim 
width

Cora
[dim: 1433, #classes: 7]

Citeseer
[dim: 3703, #classes: 6]

Pubmed
[dim: 500, #classes: 3]
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A single model for node classification?
● Different feature dimensions and # of labels
● Homophilic and heterophilic graphs exhibit different inductive biases

○ Homophilic like label propagation
○ Heterophilic depend more on node features

Michael Bronstein. Graph Neural Networks beyond Weisfeiler-Lehman and vanilla Message Passing, Medium 2022
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A single model for node classification?
● Different feature dimensions and # of labels
● Homophilic and heterophilic graphs exhibit different inductive biases

○ Homophilic like label propagation
○ Heterophilic depend more on node features

Ideas? 
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mikhail.galkin@intel.com

Code & Data

Contact

Socials

https://github.com/DeepGraphLearning/ULTRA   

Galkin et al. Towards Foundation Models for Knowledge Graph Reasoning, ICLR 2024

Mao, Chen, et al. Graph Foundation Models, ICML 2024 (new!)

🚀 > Run ULTRA on your own graph < 🚀
It’s only 177k params

@michael_galkin

https://github.com/DeepGraphLearning/ULTRA

